Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T19:17:52.674Z Has data issue: false hasContentIssue false

Structure refinement and X-ray powder diffraction data for kalipyrochlore (K,Sr,Na,Ca,H2O)2−m(Nb,Ti)2−xO6−wY1−n, with (0<m<0.8, x∼0.2, W = 0 and 0.2<n<1)

Published online by Cambridge University Press:  10 January 2013

S. Philippo
Affiliation:
Université Catholique de Louvain, Laboratoire de Géologie et Minéralogie, Pl. L. Pasteur, 3, 1348 Louvain-la-Neuve, Belgium
J. Naud
Affiliation:
Université Catholique de Louvain, Laboratoire de Géologie et Minéralogie, Pl. L. Pasteur, 3, 1348 Louvain-la-Neuve, Belgium
J. P. Declercq
Affiliation:
Université Catholique de Louvain, Laboratoire de Chimie Physique et de Cristallographie, Pl. L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
J. Feneau-Dupont
Affiliation:
Université Catholique de Louvain, Laboratoire de Chimie Physique et de Cristallographie, Pl. L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium

Abstract

The kalipyrochlore (K,Sr,Na,Ca,H2O)2−m(Nb,Ti)2−xO6−wY1−n, with (0<m<0.8, x∼0.2, w = 0 and 0.2<n<1) from Lueshe, Zaire is a defect pyrochlore species whose A-site weakly depleted. The measured powder diffraction is presented with a calculated figure of merit F(30) = 74.7(0.010,39). The structure has been refined by single-crystal from X-ray diffraction data collected on a Huber four-circle diffractometer and by Rietveld analysis from X-ray powder diffraction data. The slightly weathered crystal (studied by single crystal) has a cubic pyrochlore-type structure with the same atomic positions and a unit-cell parameter a = 10.603(5) Å, space group (S.G.): Fd3m. The highly weathered crystal (studied by Rietveld) has the same cubic pyrochlore-type structure except for the oxygen position. The oxygen moved from the 48f position with x, y, z equal to 0.284, 0, 0 to x = 0.308(5), y = 0.024(6) and z = –0.028(9). The cell parameter is a = 10.569(6)±0.0007 Å. These modifications of positions induce a distortion of the A-site into an hexagonal bipyramid and an elongation of the B-site along the c axis of the octahedron.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T. (1973). Rep. PB216188, U.S. Department of Commerce, National Technical Information Service, 5825 Port Royal Road, Springfield, VA22151, U.S.A.Google Scholar
Caglioti, et al. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.CrossRefGoogle Scholar
Chakoumakos, B. (1984). “Systematics of the Pyrochlore Structure Type, ideal A2B2X6Y,” J. Solid State Chem. 53, 120129.CrossRefGoogle Scholar
Dollase, (1986). “Correction of intensities for preferred Orientation in Powder Diffractometry: Application of the March model,” J. Appl. Cryst. 19, 267272.Google Scholar
Ercit, S. T., Hawthorne, F. C. and Cerný, P. (1994). “The structural Chemistry of Kalipyrochlore, a Hydropyrochlore,” Can. Mineralogist 32, 415420.Google Scholar
Goreaud, D., and Raveau, B. (1980). “Alunite and crandallite: a structure derived from that of pyrochlore,” Am. Mineralogist 65, 953956.Google Scholar
Groult, D., Pannetier, J., and Raveau, B. (1982). “Neutron diffraction study of the Defect Pyrochlore TaWO5.5, HTaWO6, H2Ta2O6 and HTaWO6.H2O,” J. Solid State Chem. 41, 277285.Google Scholar
Hogarth, D. (1977). “Classification and nomenclature of the pyrochlore group,” Am. Mineralogist 62, 403410.Google Scholar
Lumpkin, G., and Ewing, R. (1992). “Geochemical alteration of pyrochlore group minerals: Microlite subgroup,” Am. Mineralogist 77, 179188.Google Scholar
Rietveld, H. M. (1969). “A profile Refinement Method for Nuclear and Magnetic structure,” J. Appl. Cryst. 2, 6571.Google Scholar
Sheldrick, G. M. (1993). SHELXL, J. Appl. Cryst. (to be submitted).Google Scholar
Smith, G. J., and Snyder, R. L. (1979). “FN: A criterion for Rating Powder Diffraction Patterns and evaluating the Reliability of Powder-Pattern Indexing,” J. Appl. Cryst. 12, 6065.Google Scholar
Taylor, J. C. (1991). “Computer Programs for Standardless Quantitative Analysis of Minerals Using the Full Powder Diffraction Profile,” Powder Diffr. 6, 29.Google Scholar
van Wambeke, L. (1960). “Geochemical Prospecting and appraisal of niobium bearing carbonatites by X-ray methods,” Econom. Geol. 55, 732758.CrossRefGoogle Scholar
van Wambeke, L. (1978). “Kalipyrochlore, a new mineral of the pyrochlore group,” Am. Mineralogist 63, 528530.Google Scholar