Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T14:43:12.810Z Has data issue: false hasContentIssue false

Structure Re-determination of LASSBio-294 – a cardioactive compound of the N-acylhydrazone class – using X-ray powder diffraction data

Published online by Cambridge University Press:  14 November 2013

Fanny N. Costa
Affiliation:
Laboratório de Instrumentação Nuclear/COPPE, Universidade Federal do Rio de Janeiro, C.P. 68.509, CEP 21941-972, Rio de Janeiro, RJ, Brazil
Fabio Furlan Ferreira
Affiliation:
Centro de Ciências Naturais e Humanas (CCNH), Univerisdade Federal do ABC (UFABC), Av. dos Estados, 5001, CEP 09210-580, Santo André, SP, Brazil
Tiago F. da Silva
Affiliation:
Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
Eliezer J. Barreiro
Affiliation:
Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
Lídia M. Lima
Affiliation:
Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
Delson Braz
Affiliation:
Laboratório de Instrumentação Nuclear/COPPE, Universidade Federal do Rio de Janeiro, C.P. 68.509, CEP 21941-972, Rio de Janeiro, RJ, Brazil
Regina C. Barroso
Affiliation:
Instituto de Física, Universidade do Estado do Rio de Janeiro (UERJ), CEP 20550-900, Rio de janeiro, RJ, Brazil

Abstract

Many N-acylhydrazone derivatives synthetized in LASSBio® cannot be prepared as single crystals of sufficient size and/or quality for structure determination to be carried out using single crystal X-ray diffraction techniques. This article highlights the opportunity for determining crystal structures of this class of compounds directly from powder diffraction data. For this task, the crystal structure of LASSBio-294 was re-determined by means of conventional X-ray powder diffraction data and so, compared with the crystal structure already determined for single crystal data. LASSBio-294 is a cardioactive compound of the N-acylhydrazone class, which can become part of the therapeutic interventions designed to decrease exertional fatigue, and, consequently, improve the quality of life of patients suffering from chronic heart failure. Its final crystal structure was refined by means of the Rietveld method (Rietveld, 1967; 1969). This drug crystallizes in a monoclinic (P21/c) space group, with unit cell parameters a = 11.3413(3) Å, b = 12.3573(4) Å, c = 9.0158(3) Å, β = 89.821(2)°, V = 1263.55(7) Å3, Z = 4, Ź = 1 and ρcalc = 1.4419(1) g cm−3. The goodness-of-fit indicator and R-factors were, respectively: χ2 = 1.203, R Bragg  = 0.696%, R wp  = 5.59%, R exp  = 4.65% and R p  = 4.18%. The molecules in LASSBio-294 are H-bonded along the c-axis involving the atoms N(3)–H(8)···O(4).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, E. and Korst, J. (1991). Simulated Annealing and Boltzmann Machines: a Stochastic Approach to Combinatorial Optimization and Neural Computing (John Wiley & Sons, Chichester, UK), 2nd ed., p. 284.Google Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci., 58, 380388.CrossRefGoogle ScholarPubMed
Balzar, D. (1993). “X-Ray-diffraction line broadening - Modeling and applications to high-T c Superconductors,” J. Res. Natl. Inst. Stand. Technol. 98, 321353.Google Scholar
Barreiro, E. J. (2002). “Estratégia de Simplificação Molecular no Planejamento Racional de Fármacos: A Descoberta de Novo Agente Cardioativo,” Quím. Nova 25, 11721180.Google Scholar
Barreiro, E. J., Albuquerque, M. G., Sant´ana, C. M. R., Rodrigues, C. R. and Alencastro, R. B. (1997). “Modelagem molecular: uma ferramenta para o planejamento racional de fármacos na Química Medicinal,” Quím. Nova 20, 300310.Google Scholar
Barreiro, E. J. and Fraga, C. A. M. (2008). Química Medicinal - As Bases Moleculares da Ação dos Fármacos. (Artmed, Porto Alegre), 2nd ed., p. 243.Google Scholar
Barreiro, E. J., Fraga, C. A. M., Miranda, A. I. P. and Rodrigues, C. R. (2002). “Química medicinal de n-acilidrazonas: novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos,” Quím. Nova 25, 129148.Google Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.Google Scholar
Brittain, H. G., Bogdanowich, S. J., Bugay, D. E., DeVincentis, J., Lewen, G., and Newman, A. W. (1991). “Physical characterization of pharmaceutical solids,” Pharm. Res., 8, 963973.CrossRefGoogle ScholarPubMed
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. and Orpen, A. G. (2004). “Retrieval of Crystallographically-Derived Molecular Geometry Information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Cheary, R. W. and Coelho, A. A. (1998a). “Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations,” J. Appl. Crystallogr. 31, 851861.Google Scholar
Cheary, R. W. and Coelho, A. A. (1998b). “Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a Fundamental-Parameter profile fitting procedure,” J. Appl. Crystallogr. 31, 862868.Google Scholar
Cheetham, A. K. (2006). Structure determination from powder diffraction data: an overview (International Union of Crystallography / Oxford Science Publications, New York), 1st ed., p. 337.Google Scholar
Chernyshev, V. V. (2001). “Structure determination from powder diffraction,” Russ. Chem. Bull. Int. Ed. 50, 22732292.Google Scholar
Coelho, A. A., Evans, J., Evans, I., Kern, A. and Parsons, S. (2011). “The TOPAS symbolic computation system,” Powder Diffr. 26, s22s25.Google Scholar
David, W. I. F., Shankland, K., McCusker, L. B. and Baerlocher, C. (2006a). Structure determination from powder diffraction data. (Oxford University Press, New York), 1st ed., p. 337 and references therein.Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. and Cole, J. C. (2006b). “ DASH: a program for crystal structure determination from powder diffraction Data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
David, W. I. F. and Sivia, D. S. (2001). “Background estimation using a robust Bayesian Analysis,” J. Appl. Crystallogr., 34, 318324.Google Scholar
Duarte, C. D., Barreiro, E. J. and Fraga, C. A. M. (2007). “Privileged Structures: A Useful Concept for the Rational Design of New Lead Drug Candidates,” Mini Rev. Med. Chem. 7, 11081119.Google Scholar
Evans, B. E., Rittle, K. E., Bock, M. G., Dipardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. and Hirshfieldt, J. (1988). “Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagonists,” J. Med. Chem. 31, 22352246.Google Scholar
Ferreira, F. F., Antonio, A. C., Rosa, P. C. P. and Paiva-Santos, C. O. (2010). “Crystal structure determination of mebendazole form A using high-resolution synchrotron X-ray powder diffraction data,” J. Pharm. Sci. 99, 17341744.Google Scholar
Ferreira, F. F., Trindade, A. C., Antonio, S. G. and Paiva-Santos, C. O. (2011). “Crystal structure of propylthiouracil determined using high-resolution synchrotron X-ray powder diffraction,” CrystEngComm 13, 54745479.CrossRefGoogle Scholar
Figueiredo, J. M., Camara, C. A., Amarante, E. G., Miranda, A. L. P., Santos, F. M., Rodrigues, C. R., Fraga, C. A. M. and Barreiro, E. J. (2000). “Design and synthesis of novel potent antinociceptive agents: N-acetylimidazolyl N-acylhydrazone derivatives,” Bioorg. Med. Chem. 8, 22432248.Google Scholar
Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. and Frampton, C. S. (2005). “Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges,” J. Appl. Crystallogr, 38, 249259.Google Scholar
Gonzalez-Serratos, H., Chang, R., Pereira, E. F. R., Castro, N. G., Aracava, Y., Melo, P. A., Lima, P. C., Fraga, C. A. M., Barreiro, E. J. and Albuquerque, E. X. (2001). “A novel thienylhydrazone, 2-thienylidene3,4-methylenedioxybenzoylhydrazine, increases inotropism and decreases fatigue of skeletal muscle,” J. Pharmacol. Exp. Ther. 299, 558566.Google Scholar
Grant, D. J. W. (1999). “Theory and origin of polymorphism”, in Polymorphism in pharmaceutical solids, edited by Brittain, H. G. (New York, Marcel Dekker), Vol. 95, pp. 133.Google Scholar
Haleblian, J. K. and McCrone, W. J. (1969). “Pharmaceutical applications of polymorphism,” J. Pharm. Sci. 58, 911929.Google Scholar
Harris, K. D. M. (2002). “Structure determination of molecular materials from powder diffraction data,” Curr. Opin. Solid St. Mat. Sci. 6, 125130.Google Scholar
Harris, K. D. M. and Cheung, E. Y. (2004). “How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev. 33, 526538.Google Scholar
Harris, K. D. M., Tremayne, M. and Kariuki, B. M. (2001). “Contemporary advances in the use of powder X-ray diffraction for structure determination.” Angew. Chem. Int. Ed., 40, 16261651.Google Scholar
Hofmann, D. W. M. (2002). “Fast estimation of crystal densities,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 489493.Google Scholar
Hull, A. W. (1919). “A New Method of Chemical Analysis,” J. Am. Chem. Soc. 41, 11681175.Google Scholar
Järvinen, M. (1993). “Application of symmetrized harmonics expansion to correction of the preferred orientation effect,” J. Appl. Crystallogr. 26, 525531.Google Scholar
Kümmerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G., Fraga, C. A. M. and Barreiro, E. J. (2009). “Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives,” Eur. J. Med. Chem. 44, 40044009.Google Scholar
Langford, J. I. Lou ër, D. (1996). “Powder Diffraction,” Rep. Prog. Phys., 59, 131234.Google Scholar
LeJemtel, T. H., Gumbardo D,, Chadwick, B., Rutman, H. I. and Sonnenblick, E. H. (1986). “Milrinone for long-term therapy of severe heart failure: clinical experience with special reference to maximal exercise tolerance,” Circulation 73, III213III218.Google Scholar
Lima, L. M. and Barreiro, E. J. (2005). “Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design,” Curr. Med. Chem. 12, 2349.Google Scholar
Lima, P. C., Lima, L. M., Silva, K. C., Léda, P. H., Miranda, A. L., Fraga, C. A. and Barreiro, E. J. (2000). “Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole,” Eur. J. Med. Chem. 35, 187203.Google Scholar
Lombardino, J. G. and Lowe, J. A. (2004). “The role of the medicinal chemist in drug discovery – then and now,” Nat. Rev. Drug Discov. 3, 853862.Google Scholar
Macrae, C. F., I. J. Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van De Streek, J. and Wood, P. A. (2008). “Mercury CSD 2.0– new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Markvardsen, A. J., David, W. I. F., Johnson, J. C. and Shankland, K. (2001). “A probabilistic approach to space-group determination from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. 57, 4754.Google Scholar
Menden, A. (1998). “Crystal Structure Solution from Powder Diffraction Data – State of the Art and Perspectives,” Croat. Chem. Acta 71, 615633.Google Scholar
Nic, M., Jirat, J. and Kosata, B. (2007). IUPAC Compendium of Chemical Terminology - The Gold Book. (Blackwell Scientific Publications, Oxford), 2nd ed., p. 1622.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J Appl. Crystallogr. 14, 357361.Google Scholar
Piaz, V. D., Giovannoni, M. P., Castellana, C., Palacios, J. M., Beleta, J., Domenech, T. and Segarra, V. (1997). “New heterocyclic fused pyridazinones as potent and selective phosphodiesterase IV inhibitors,” J. Med. Chem. 40, 14171421.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure Refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Shell, J. W. (1963). “X-Ray and Crystallographic Applications in Pharmaceutical Research II,” J. Pharm. Sci. 52, 2429.Google Scholar
Silva, A. G., Zapata-Sudo, G., Kummerle, A. E., Fraga, C. A. M., Barreiro, E. J. and Sudo, R. T. (2005). “Synthesis and vasodilatory activity of new N-acylhydrazone derivatives, designed as LASSBio-294 analogues,” Bioorg. Med. Chem. Lett. 13, 34313437.Google Scholar
Silva, C. L. M., Noël, F. and Barreiro, E. J. (2002). “Cyclic GMP-dependent vasodilatory properties of LASSBio-294 in rat aorta,” Br. J. Pharm. 135, 293298.Google Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr. 36, 713.Google Scholar
Sudo, R. T., Albuquerque, E. X., Barreiro, E. J., Aracava, Y., Cintra, W. M., Melo, P. A., Noël, F. G., Sudo, G. Z., Silva, C. L. M., Castro, N. G., Fernandes, P. D., Fraga, C. A. M. and Miranda, A. L. P. (2006). Thienylhydrazon with digitalis-like properties (positive inotropic effects) . Appl. Nr. 10/070,328, US Patent 7,091,238 B1, University of Maryland.Google Scholar
Sudo, R. T., Zapata-Sudo, G. and Barreiro, E. J. (2001). “The new compound, LASSBio-294, increases the contractility of intact and saponin-skinned cardiac muscle from wistar rats,” Br. J. Pharm. 134, 603613.Google Scholar
Toby, B. H. (2006). “R factors in Rietveld analysis: How good is good enough?,” Powder Diffr. 21, 6770.Google Scholar
van Laarhoven, P. J. M. and Aarts, E. H. L. (1992). Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, Dordrecht, Holland), 4th ed., p. 198.Google Scholar
Viegas-Júnior, C., Danuello, A., Bolzani, V. S., Barreiro, E. J. and Fraga, C. A. M. (2007). “Molecular hybridization: a useful tool in the desing of new drug prototypes,” Curr. Med. Chem. 14, 18291852.Google Scholar
Wermuth, C. G. (1996). The Practice of Medicinal Chemistry (Academic Press: New York), 1st ed., p. 968.Google Scholar
Yu, L., Reutzel, S. M. and Stephenson, G. A. (1998). “Physical characterization of polymorphic drugs: an integrated characterization strategy,” Pharm. Sci. Tech. Today 1, 118127.Google Scholar