Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T05:51:43.984Z Has data issue: false hasContentIssue false

Structure determination from powder diffraction data of a new layered ammonium lanthanum sulfate, β-(NH4)La(SO4)2

Published online by Cambridge University Press:  05 March 2012

P. Bénard-Rocherullé
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
H. Tronel
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
D. Louër*
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
*
a)Electronic mail: [email protected]

Abstract

A new variety of ammonium lanthanum sulfate, β-(NH4)La(SO4)2, was synthesized hydrothermally. The crystal structure was solved ab initio from powder diffraction data collected using a conventional X-ray source. The powder diffraction pattern was indexed by the successive dichotomy method: The symmetry is monoclinic, space group Pn, cell dimensions a=6.9365(4) Å, b=9.0055(5) Å, c=5.4541(4) Å, β=90.672(8)°, V=340.68(3) Å3 and Z=2 [M20=65, F30=124(0.0071,34)]. Direct methods were used for structure solution, and refinement of the atomic coordinates was carried out by the Rietveld method (RF=0.061, Rwp=0.099). The structure contains anionic layers built from lanthanum atoms ninefold coordinated to monodentate and bidentate sulfate oxygen atoms. Ammonium groups, which provide hydrogen bonds, are located between the layers. The crystal structure contrasts with that of the α phase, which is less dense by a factor of 4.4%.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., and Polidori, G. (1995). “On the number of statistically independent observations in a powder diffraction pattern,” J. Appl. Crystallogr. JACGAR 28, 738744. acr, JACGAR CrossRefGoogle Scholar
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, G. L., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., and Rizzi, R. (1999). “EXPO: a program for full powder pattern decomposition and crystal structure solution,” J. Appl. Crystallogr. JACGAR 32, 339340. acr, JACGAR CrossRefGoogle Scholar
Bénard, P., Louër, D., Dacheux, N., Brandel, V., and Genet, M. (1994). “U(UO2)(PO4)2, a new mixed-valence uranium orthophosphate: ab initio structure determination from powder data and optical and X-ray photoelectron spectra,” Chem. Mater. CMATEX 6, 10491058. cma, CMATEX CrossRefGoogle Scholar
Blackburn, A. C.and Gerkin, R. E. (1994). “Sodium lanthanum(III) sulfate monohydrate, NaLa(SO4)2⋅H2O,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 50, 835838. acg, ACSCEE CrossRefGoogle Scholar
Boultif, A.and Louër, D. (1991). “Indexing of powder diffraction patterns of low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
Bukovec, N., Golič, L., Bukovec, P., and Šiftar, J. (1978). “Die synthese und kristallstruktur von caesium-praseodymsulfat,” Monatsch. Chem. MOCMB7 109, 13051310. mnc, MOCMB7 CrossRefGoogle Scholar
Bukovec, N., Kaucic, V., and Golic, L. (1980). “Caesium lanthanum Bis(sulfate).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 36, 129130. acb, ACBCAR CrossRefGoogle Scholar
Degtyarev, P. A., Korytnaya, F. M., Pokrovskii, A. N., and Kovba, L. M. (1977). “Crystal structure of the anhydrous double sulfate of potassium and neodymium KNd(SO4)2,Vestn. Mosk. Univ., Ser. 2: Khim. VMUKA5 1977, 705708. 8pl, VMUKA5 Google Scholar
Degtyarev, P. A., Pokrovskii, A. N., and Kovba, L. M. (1978). “Crystal structure of the anhydrous double sulfate KPr(SO4)2,Kristallografiya KRISAJ 23, 840843. krg, KRISAJ Google Scholar
Domingues, L. P., Wilfong, R. L., and Leroy, R. F. (1962). “Pyrolis of five yttrium, lanthanum, and cerium,” [Washington] U.S. Dept. of the Interior, Bureau of Mines.Google Scholar
Ericksson, B., Larsson, L. O., Niinistö, L., and Skoglund, U. (1974). “Crystal structure of ammonium sulfate tetrahydrate,” Inorg. Chem. INOCAJ 13, 290295. ino, INOCAJ CrossRefGoogle Scholar
Gascoigne, D., Tarling, S. E., Barnes, P., Pygall, C. F., Bénard, P., and Louër, D. (1994). “Ab initio structure determination of Zr(OH)2SO4⋅3H2O using conventional monochromatic X-ray powder diffraction,” J. Appl. Crystallogr. JACGAR 27, 399405. acr, JACGAR CrossRefGoogle Scholar
ICDD (2001). International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Iskhakova, L. D., Gasanov, Y., and Trunov, V. K. (1988). “Crystal structure of the monoclinic modification of KNd(SO4)2,Zh. Strukt. Khim. ZSTKAI 29, 9599. zsk, ZSTKAI Google Scholar
Iskhakova, L. D., Sarukhanyan, N. L., and Trunov, V. K. (1985). “Preparation and crystal structure of ammonium terbium sulfate (NH4)6Tb4(SO4)9⋅2(H2O),” Russ. J. Inorg. Chem. RJICAQ 30, 978981. rji, RJICAQ Google Scholar
Iskhakova, L. D., Sukhova, I. E., Chernova, O. P., Shakhno, I. V., and Plyushchev, V. E. (1975). “Preparation and study of some physicochemical properties of ammonium rare-earth element double sulfates,” Russ. J. Inorg. Chem. RJICAQ 20 (2), 193195. rji, RJICAQ Google Scholar
Iyer, P. N.and Natarajan, P. R. (1990). “Double sulfate of PuIII and some lanthanides with ammonium,” J. Less-Common Met. JCOMAH 159, 111. jco, JCOMAH CrossRefGoogle Scholar
Iyer, P. N.and Natarajan, P. R. (1992). “Preparation and characterization of ammonium lanthanide double sulfate monohydrates,” Thermochim. Acta THACAS 210, 185192. tha, THACAS CrossRefGoogle Scholar
Khan, A. A.and Baur, W. H. (1972). “Salt hydrates VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium Bis(hydrogen orthophosphate) tetrahydrate and a discussion of the ammonium ion,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 28, 683693. acb, ACBCAR CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 477–452. mrb, MRBUAC CrossRefGoogle Scholar
Louër, D.and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 21, 430437. acr, JACGAR CrossRefGoogle Scholar
Louër, D.and Louër, M. (1972). “Méthode d’essais et erreurs pour l’indexation automatique des diagrammes de poudre,” J. Appl. Crystallogr. JACGAR 5, 271275. acr, JACGAR CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A FORTRAN Program for Crystallographic Data Evaluation,” US Natl. Bur. Stand. Tech. Note No. 1141, p. 54 (NBS* AIDS83).CrossRefGoogle Scholar
Niinistö, L., Toivonen, J., and Valkonen, J. (1980). “The crystal structure of (NH4)5[La(SO4)4]. An example of decacoordinated lanthanum,” Finn. Chem. Lett. 87–92.Google Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in Collected Abstracts of Powder Diffraction Meeting (Toulouse, France), pp. 127–128.Google Scholar
Roisnel, T.and Rodriguez-Carvajal, J. (2001). “WINPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum MSFOEP 378–381, 118123. msf, MSFOEP CrossRefGoogle Scholar
Sarukhanyan, N. L., Iskhakova, L. D., and Trunov, V. K. (1984). “Crystal structure of ammonium lanthanum sulfate (NH4)La(SO4)2,Kristallografiya KRISAJ 29 (3), 435439. krg, KRISAJ Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACBN 32, 751767. aca, ACACBN CrossRefGoogle Scholar
Sheldrick, G. M. (1997). SHELXL-97: Programs for Crystal Structure Refinement, University of Göttingen, Göttingen.Google Scholar
Sirotinkin, S. P., Tchijkov, S. M., Pokrovskii, A. N., and Kovba, L. M. (1978). “Structure cristalline de sulfates doubles de sodium et de terres rares,” J. Less-Common Met. JCOMAH 58, 101105. jco, JCOMAH CrossRefGoogle Scholar
Swanson, H. E., Morris, M. C., Evans, E. H. and Ulmer, L. (1964). “Standard X-ray diffraction powder patterns,” Natl. Bur. Stand. (US) Monogr. 25, Sect. 3, pp. 1–3.Google Scholar
Wells, A. F. (1987). Structural Inorganic Chemistry, 5th ed. (Oxford Science Publications, Oxford), p. 79.Google Scholar