Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:31:22.879Z Has data issue: false hasContentIssue false

Structure and X-ray powder reference patterns for hexagonal perovskite-related phases, (Sr0.8Ca0.2)5Co4O12 and Sr6Co5O15

Published online by Cambridge University Press:  05 March 2012

W. Wong-Ng*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Poly Crystallography, Inc., Naperville, Illinois 60540
G. Liu
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Two selected members of the homologous series An+2BBn′O3n+3 (A=Sr and Ca; B and B′=Co) have been investigated for their crystal structures because of their potential applications as thermoelectric materials. A combined Rietveld refinement and spin-polarized magnetic geometry optimization technique was employed for the structural studies. Both the n=3 member, (Sr0.8Ca0.2)5Co4O12, and the n=4 member, Sr6Co5O15, have distorted hexagonal perovskite-related structures that possess one-dimensional cobalt oxide chains separated by alkaline-earth cations. The linear chains consist of one unit of CoO6 trigonal prism alternating with n units of CoO6 octahedra. Crystal structures and reference powder X-ray diffraction patterns of (Sr0.8Ca0.2)5Co4O11 [P3c1, a=9.4196(2) Å, c=19.9857(6) Å, V=825.83 Å3, and Dx=5.358 g/cm3] and Sr6Co5O15 [R32, a=9.497 64(12) Å, c=12.3956(2) Å, V=968.34 Å3, and Dx=5.455 g/cm3] are reported.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F., Minaud, S., and Renard, C. (1994). “Preliminary crystal structure of mixed-valency Sr4Ni3O9, the actual formula of the so-called Sr5Ni4O11,” J. Mater. Chem.JMACEP 4, 17631764.10.1039/jm9940401763CrossRefGoogle Scholar
Blake, G. R., Battle, P. D., Sloan, J., Vent, J. F., Darriet, J., and Weill, F. (1999). “Neutron diffraction study of the structures of Ba5CuIr3O12 and Ba16Cu3Ir10O39,” Chem. Mater.CMATEX 11, 15511558.10.1021/cm9807844CrossRefGoogle Scholar
Boulahya, K., Parras, M., and González-Calbet, J. M. (1999a). “The A n+2B nB′O3n+3 family (B=B′=Co): Ordered intergrowth between 2H-BaCoO3 and Ca3Co2O6 structures,” J. Solid State Chem.JSSCBI 145, 116127.10.1006/jssc.1999.8230CrossRefGoogle Scholar
Boulahya, K., Parras, M., and González-Calbet, J. M. (1999b). “Cation deficiency in (Ba,Sr)Co1-xOy hexagonal perovskite related oxides: New members of the A n+2BB nO3n+3 homologous series,” J. Solid State Chem.JSSCBI 142, 419427.10.1006/jssc.1998.8057CrossRefGoogle Scholar
Brese, N. E. and O’Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 41, 244247.10.1107/S0108768185002063CrossRefGoogle Scholar
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P. (2007). “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices,” Adv. Mater.ADVMEW 19, 10431053.10.1002/adma.200600527CrossRefGoogle Scholar
Fjellvåg, H., Gulbrandsen, E., Aasland, S., Olsem, A., and Hauback, B. C. (1996). “Crystal structure and possible charge ordering in one-dimensional Ca3Co2O6,” J. Solid State Chem.JSSCBI 124, 190194.10.1006/jssc.1996.0224CrossRefGoogle Scholar
Funahashi, R., Urata, S., and Kitawaki, M. (2004). “Exploration of n-type oxides by high throughput screening,” Appl. Surf. Sci.ASUSEE 223, 4448.10.1016/S0169-4332(03)00899-7CrossRefGoogle Scholar
Ghamaty, S. and Eisner, N. B. (1999). “Development of quantum well thermoelectric films,” Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD, pp. 485488.Google Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr.JACGAR 37, 823831.10.1107/S0021889804018096CrossRefGoogle Scholar
Harrison, W. T. A., Hegwood, S. L., and Jacobson, A. L. (1995). “A powder neutron diffraction determination of the structure of Sr6Co5O15, formerly described as the low-temperature hexagonal form of SrCoO3−x,” J. Chem. Soc., Chem. Commun.JCCCAT19531954.10.1039/c39950001953CrossRefGoogle Scholar
Hernando, M., Boulahya, K., Parras, M., González-Calbet, J. M., and Amador, U. (2003). “Synthesis and microstructural characterization of two new one-dimensional members of the (A3NiMnO6)α(A3Mn3O9)β homologous series (A=Ba,Sr),” Eur. J. Inorg. Chem.EJICFO24192425.10.1002/ejic.200300028CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit,” ChemInform 35 (17).10.1002/chin.200417240CrossRefGoogle Scholar
ICDD (2010). “Powder Diffraction File,’’ edited by Kabekkodu, S., International Centre for Diffraction Data, Newtown Square, Pennsylvania.Google Scholar
Iwasaki, K., Ito, T., Matsui, T., Nagasaki, T., Ohta, S., and Koumoto, K. (2006). “Synthesis of an oxygen nonstoichiometric Sr6Co5O15 phase,” Mater. Res. Bull.MRBUAC 41, 732739.10.1016/j.materresbull.2005.10.012CrossRefGoogle Scholar
Iwasaki, K., Yamane, H., Kubota, S., Takahashi, J., and Shimada, M. (2003). “Power factors of Ca3Co2O6 and Ca3Co2O6-based solid solutions,” J. Alloys Compd.JALCEU 358, 210215.10.1016/S0925-8388(03)00041-0CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996a). “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. BPLRBAQ 54, 1116911186.10.1103/PhysRevB.54.11169CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J. (1996b). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci.CMMSEM 6, 1550.10.1016/0927-0256(96)00008-0CrossRefGoogle Scholar
Kresse, G. and Joubert, D. (1999). “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. BPLRBAQ 59, 17581775.10.1103/PhysRevB.59.1758CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (1992). “GSAS-General Structure Analysis system,” U.S. Government contract (W-7405-ENG-36) by the Los Alamos National Laboratory, which is operated by the University of California for the U.S. Department of Energy.Google Scholar
Lee, J. and Holland, G. (1991). “Identification of a new strontium Ni(III) oxide prepared in molten hydroxide,” J. Solid State Chem.JSSCBI 93, 267271.10.1016/0022-4596(91)90299-WCrossRefGoogle Scholar
Maignan, A., Hébert, S., Martin, C., and Flahaut, D. (2003). “One dimensional compounds with large thermoelectric power factor,” Mater. Sci. Eng., BMSBTEK 104, 12981299.10.1016/S0921-5107(03)00183-1CrossRefGoogle Scholar
Maignan, A., Michel, C., Masset, A. C., Martin, C., and Raveau, B. (2000). “Single crystal study of the one dimensional Ca3Co2O6 compound: Five stable configurations for the Ising triangular lattice,” Eur. Phys. J. BEPJBFY 15, 657663.10.1007/PL00011051CrossRefGoogle Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9,” Phys. Rev. BPLRBAQ 62, 166175.10.1103/PhysRevB.62.166CrossRefGoogle Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem.JSSCBI 178, 16701674.10.1016/j.jssc.2005.03.004CrossRefGoogle Scholar
Mikami, M., Funashashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6,” J. Appl. Phys.JAPIAU 94, 65796582.10.1063/1.1622115CrossRefGoogle Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci.ASUSEE 197–198, 442447.10.1016/S0169-4332(02)00359-8CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodriguez, J., Gonzalez, C. J. M., Grenier, J. C., Pannetier, J., and Anne, M. (1987). “Phase transitions in Sr2Co2O5: A neutron thermodiffracometry study,” Solid State Commun.SSCOA4 62, 231234.10.1016/0038-1098(87)90801-5CrossRefGoogle Scholar
Stitzer, K. E., Darriet, J., and zur Loye, H. -C. (2001). “Advances in the synthesis and structural description of 2H-hexagonal perovskite-related oxides,” Curr. Opin. Solid State Mater. Sci.COSSFX 5, 535544.10.1016/S1359-0286(01)00032-8CrossRefGoogle Scholar
Sun, J., Li, G., Li, Z., You, L., and Lin, J. (2006). “Crystal growth and structure determination of oxygen-deficient Sr6Co5O15,” Inorg. Chem.INOCAJ 45, 83948402.10.1021/ic060862mCrossRefGoogle ScholarPubMed
Taguchi, H., Takeda, Y., Kanamaru, F., Shimada, M., and Koizumi, M. (1977). “Barium cobalt trioxide,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 33, 12981299.10.1107/S0567740877005949CrossRefGoogle Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. BPLRBAQ 56, R12685-R12687.10.1103/PhysRevB.56.R12685CrossRefGoogle Scholar
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” ScienceSCIEAS 272, 12761277.10.1126/science.272.5266.1276CrossRefGoogle Scholar
Tritt, T. M. and Subramanian, M. A., guest editors (2006). “Thermoelectric materials, phenomena, and applications: A bird’s eye view,” MRS Bull.MRSBEA 31, 188195.10.1557/mrs2006.44CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B. (2001). “Growth of one-dimensional Si/SiGe heterostructures by thermal CVD,” Nature (London)NATUAS 413, 597602.10.1038/35098012CrossRefGoogle Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E. L., Lowhorn, N., and Kaduk, J. A. (2010). “Phase compatibility and thermoelectric properties of compounds in the Sr-Ca-Co-O System,” J. Appl. Phys.JAPIAU 107, 033508.10.1063/1.3276158CrossRefGoogle Scholar