Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T17:59:28.118Z Has data issue: false hasContentIssue false

Structural study of cadmium hydroxide sulfates. VI. The layer structure of Cd4SO4(OH)6.1.5H2O studied from X-ray powder and single-crystal diffraction data

Published online by Cambridge University Press:  05 March 2012

D. Louër*
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
J. Rius
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Cerdanyola, Catalunya, Spain
P. Bénard-Rocherullé
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
M. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*
a)Electronic mail: [email protected]

Abstract

The crystal structure of the layered cadmium hydroxide sulfate Cd4SO4(OH)6.1.5H2O has been solved from X-ray powder diffraction data. The compound crystallizes with hexagonal symmetry, a=9.145(1) Å, c=15.099(3) Å, V=1093.5 Å3, Z=4, space group P63. Due to the unusual environment of one cadmium atom and to the fact that a suitable thin tabular crystal could be found later, a single-crystal X-ray diffraction experiment was also carried out. In both cases the structure was solved applying direct-methods. The refinements converged to the residual factors Rwp=0.152 and RF=0.059 from the powder data and R1=0.058 and wR=0.165 for the single crystal data case. The structure is built from brucite-type layers based on CdO6 octahedra, in which one-seventh of the octahedral sites are empty. Directly above and below these empty sites, two additional octahedrically coordinated Cd atoms are located. The crystal chemistry of the cadmium hydroxide sulfate family is discussed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiwidjaja, G., Friese, K., Klaska, K.-H., and Schlüter, J. (1997). “The crystal structure of gordaite NaZn4(SO4)(OH)6Cl.6H2O,Z. Kristallogr. ZEKRDZ 212, 704707. zek, ZEKRDZ Google Scholar
Bataille, T., and Louër, D. (2000). “Powder and single-crystal X-ray diffraction study of the structure of [Y(H2O)]2(C2O4)(CO3)2,Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B56, 9981002. acl, ASBSDK CrossRefGoogle Scholar
Bear, I. J., Grey, I. E., Madsen, I. C., Newnham, I. E., and Rogers, L. G. (1986). “Structures of the basic zinc sulfates 3Zn(OH)2.ZnSO4.mH2O, m=3 and 5,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B42, 3239. acl, ASBSDK Google Scholar
Bénard, P., Louër, M., Auffrédic, J. P., and Louër, D. (1991). “Crystal structure and temperature-resolved powder diffractometry of Cd5(OH)8(NO3)2.2H2O,J. Solid State Chem. JSSCBI 91, 296305. jss, JSSCBI Google Scholar
Bénard, P., Louër, M., and Louër, D. (1991). “Solving the crystal structure of Cd5(OH)8(NO3)2.2H2O from powder diffraction data. A comparison with single crystal data,” Powder Diffr. PODIE2 6, 1015. pdj, PODIE2 Google Scholar
Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR Google Scholar
Coppens, P. (1970). “The evaluation of absorption and extinction in single-crystal structure analysis,” in Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall, and C. P. Huber (Munksgaard, Copenhagen), pp. 255–270.Google Scholar
de Haan, Y. M. (1963). “Interdiffusion method for the preparation of single crystals of certain hydroxides and basic salts,” Nature (London) NATUAS 200, 876. nat, NATUAS Google Scholar
de Wolff, P. “Cadmium sulfate hydroxide hydrate,” PDF No. 16-0816, Powder Diffraction File, Release 2000, International Centre for Diffraction Data, Swarthmore, PA.Google Scholar
Labarre, J., Louër, D., Louër, M., and Grandjean, D. (1976a). “Etude structurale des hydroxysulfates de cadmium. I. Structure cristalline de Cd2(OH)2SO4-β,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 32, 32503253. acb, ACBCAR Google Scholar
Labarre, J., Louër, D., Louër, M., and Grandjean, D. (1976b). “Etude structurale des hydroxysulfates de cadmium. II. Structure cristalline de Cd2(OH)2SO4-γ,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 32, 32533257. acb, ACBCAR Google Scholar
Langford, J. I., and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys. RPPHAG 59, 131234. rpp, RPPHAG Google Scholar
Louër, D., Labarre, J., Auffrédic, J.-P., and Louër, M. (1982a). “Etude structurale des hydroxysulfates de cadmium. IV. Structure cristalline de Cd8(OH)12(SO4)2.H2O,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B38, 10791084. acb, ACBCAR Google Scholar
Louër, D., and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 21, 430437. acr, JACGAR Google Scholar
Louër, M., and Louër, D. (1982). “Etude structurale des hydroxysulfates de cadmium. V. Synthe`se et structure cristalline de Cd3MI2(OH)2(SO4)3,2H2O (MI=Cs, K),” Rev. Chim. Miner. RVCMA8 19, 162171. rvm, RVCMA8 Google Scholar
Louër, M., Louër, D., and Grandjean, D. (1982b). “Etude structurale des hydroxysulfates de cadmium. III. Structure de la phase ∝ du dihydroxysulfate de dicadmium,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B38, 909912. acb, ACBCAR Google Scholar
Nonius (1998). Kappa CCD Program Package. Nonius BV, Delft, The Netherlands.Google Scholar
Rius, J. (1999). “XLENS, a direct methods program based on the modulus sum function: Its application to powder data,” Powder Diffr. PODIE2 14, 267273. pdj, PODIE2 Google Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Abstracts of the Meeting Powder Diffraction, Toulouse, France, pp. 127–128.Google Scholar
Rodriguez-Carvajal, and Roisnel, T. (1998). “FULLPROF.98 and WINPLOTR New Windows 95/NT applications for diffraction,” Commission on Powder Diffraction, International Union of Crystallography, Newsletter No. 20, pp. 35–36.Google Scholar
Sheldrick, G. M. (1990). “Phase annealing in SHELX-90: Direct methods for largers structures,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A46, 467473. acf, ACACEQ Google Scholar
Sheldrick, G. M. (1997). “SHELXL97. Program for the refinement of Crystal Structures,” University of Göttingen, Germany.Google Scholar
Swanson, H. E., Morris, M. C., Evans, E. H., and Ulmer, L. (1964). “Standard X-ray diffraction powder patterns,” Monograph 25, Sect. 3, National Bureau of Standards, Washington, DC, 1964, p. 1.Google Scholar
Walter-Lévy, L., Groult, D., and Visser, J. W. (1974). “Contribution a` l’étude des sulfates basiques de cadmium. I. Formation par voie aqueuse et étude radiocristallographique,” Bull. Soc. Chim. Fr. BSCFAS 1–2, 6771. bsc, BSCFAS Google Scholar
Zhu, L., Seff, K., Witzke, T., and Nasdala, L. J. (1997). “Crystal structure of Zn4Na(OH)6SO4Cl.6H2O,J. Chem. Crystallogr. JCCYEV 27, 325329., JCCYEV Google Scholar