Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T13:02:28.454Z Has data issue: false hasContentIssue false

Structural properties of methoxy derivatives of benzyl bromide, determined from powder X-ray diffraction data

Published online by Cambridge University Press:  01 March 2012

Zhigang Pan
Affiliation:
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, United Kingdom
Eugene Y. Cheung
Affiliation:
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, United Kingdom
Kenneth D. M. Harris*
Affiliation:
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, United Kingdom
Edwin C. Constable
Affiliation:
Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
Catherine E. Housecroft
Affiliation:
Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Structure determination of 3,5-dimethoxybenzyl bromide and 3,4,5-trimethoxybenzyl bromide has been carried out from laboratory powder X-ray diffraction data using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. These two compounds are of interest for their potential use as building blocks for the synthesis of dendritic materials. Although the two molecules differ only in the presence/absence of the methoxy group at the 4-position of the aromatic ring, the structural properties of the two materials are significantly different.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albesa-Jové, D., Kariuki, B. M., Kitchin, S. J., Grice, L., Cheung, E. Y., and Harris, K. D. M. (2004). “Challenges in direct-space structure determination from powder diffraction data: A molecular material with four independent molecules in the asymmetric unit,” ChemPhysChemCPCHFT 5, 414418.CrossRefGoogle Scholar
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., Rizzi, R., Spagna, R., and Gonzalez-Platas, J. (2004). “Towards EXPO2005,” Z. Kristallogr.ZEKRDZ 216, 833837.CrossRefGoogle Scholar
Bartholomew, G. P., Bazan, G. C., Bu, X. H., and Lachicotte, R. J. (2000). “Packing modes of distyrylbenzene derivatives,” Chem. Mater.CMATEX 12, 14221430.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891006441 24, 987993.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Chernyshev, V. V. (2001). “Structure determination from powder diffraction,” Russ. Chem. Bull.RCBUEY 50, 22732292.CrossRefGoogle Scholar
Cheung, E. Y., Kitchin, S. J., Harris, K. D. M., Imai, Y., Tajima, N., and Kuroda, R. (2003). “Direct structure determination of a multi-component molecular crystal prepared by a solid state grinding procedure,” J. Am. Chem. Soc.JACSAT 125, 1465814659.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2004). “A better FOX: Using flexible modeling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction,” Z. Kristallogr.ZEKRDZ 216, 847856.CrossRefGoogle Scholar
Giovannini, J., Ceolin, R., Perrin, M. A., Toscani, S., Louër, D., and Leveiller, F. (2001a). “Polymorphism and hydration of zopiclone: Determination of crystal structures, and thermodynamic studies as a function of temperature and water vapor pressure,” J. Phys. IVJPICEI 11, 9397.Google Scholar
Giovannini, J., Ter Minassian, L., Ceolin, R., Toscani, S., Perrin, M. A., Louër, D., and Leveiller, F. (2001b). “Tetramorphism of fananserine: p, T diagram and stability hierarchy from crystal structure determinations and thermodynamic studies,” J. Phys. IVJPICEI 11, 123126.Google Scholar
Guo, F. and Harris, K. D. M. (2005). “Structural understanding of a molecular material that is accessed only by a solid-state desolvation process: The scope of modern powder X-ray diffraction techniques,” J. Am. Chem. Soc.JACSAT 127, 73147315.CrossRefGoogle ScholarPubMed
Habershon, S., Harris, K. D. M., and Johnston, R. L. (2003). “Development of a multi-population parallel genetic algorithm for structure solution from powder diffraction data,” J. Comput. Chem.JCCHDD 24, 17661774.CrossRefGoogle Scholar
Habershon, S., Turner, G. W., Kariuki, B. M., Cheung, E. Y., Hanson, A. J., Tedesco, E., Albesa-Jové, D., Chao, M.-H., Lanning, O. J., Johnston, R. L., and Harris, K. D. M. (2005). EAGER—A Computer Program for Direct-Space Structure Solution from Powder X-ray Diffraction Data, Cardiff University and University of Birmingham.Google Scholar
Harris, K. D. M. and Cheung, E. Y. (2004). “How to determine structures when single crystals cannot be grown: Opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev.CSRVBR 33, 526538.CrossRefGoogle ScholarPubMed
Harris, K. D. M. and Tremayne, M. (1996). “Crystal structure determination from powder diffraction data,” Chem. Mater.CMATEX10.1021/cm960218d 8, 25542570.CrossRefGoogle Scholar
Harris, K. D. M., Johnston, R. L., and Kariuki, B. M. (1998). “The genetic algorithm: Foundations and applications in structure solution from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767398003389 54, 632645.CrossRefGoogle Scholar
Harris, K. D. M., Tremayne, M., and Kariuki, B. M. (2001). “Contemporary advances in the use of powder X-ray diffraction for structure determination,” Angew. Chem., Int. Ed.ACIEF510.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7 40, 16261651.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Harris, K. D. M., Tremayne, M., Lightfoot, P., and Bruce, P. G. (1994). “Crystal structure determination from powder diffraction data by Monte Carlo methods,” J. Am. Chem. Soc.JACSAT 116, 35433547.CrossRefGoogle Scholar
Kariuki, B. M., Serrano-González, H., Johnston, R. L., and Harris, K. D. M. (1997). “The application of a genetic algorithm for solving crystal structures from powder diffraction data,” Chem. Phys. Lett.CHPLBC 280, 189195.CrossRefGoogle Scholar
Krygowski, T. M., Pindelska, E., Anulewicz-Ostrowska, T., Grabowski, S. J., and Dubis, A. T. (2001). “Angular group-induced bond alternation (AGIBA). Conformation dependence and additivity of the effect: Structural studies of 3,5-dimethoxybenzaldehyde derivatives and related systems,” J. Phys. Org. Chem.JPOCEE 14, 349354.CrossRefGoogle Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys.RPPHAG10.1088/0034-4885/59/2/002 59, 131234.CrossRefGoogle Scholar
Langford, J. I., Louër, D., and Scardi, P. (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr.JACGAR10.1107/S002188980000460X 33, 964974.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (1987). GSAS, Los Alamos Laboratory Report No. LA-UR-86-748.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.CrossRefGoogle Scholar
Lin, Y., Lang, S. A., Lovell, M. F., and Perkinson, N. A. (1979). “New synthesis of 1,2,4-triazoles and 1,2,4-oxadiazoles,” Org. Chem.ZZZZZZ 44, 41604164.CrossRefGoogle Scholar
Lockhart, J. C., McDonnell, M. B., Clegg, W., and Hill, M. N. S. (1987). “Structure and dynamics of crowns containing the phenyldinaphthylmethane subunit (a three-bladed propeller): Observations of correlated rotation of the propeller blades and certain ether segments,” J. Chem. Soc., Perkin Trans. 1JCPRB4 2, 639649.CrossRefGoogle Scholar
Louër, D. (1988). “Some recent developments and applications of powder diffraction,” Chem. Scr.CSRPB9 28, 8995.Google Scholar
Louër, D. (1996). “Powder X-ray diffraction 100 years after Roentgen,” J. Phys. IVJPICEI 6, 5769.Google Scholar
Louër, D. (1998). “Advances in powder diffraction analysis,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767398007363 54, 922933.CrossRefGoogle Scholar
Louër, D. (2003). “Microstructure and profile of X-ray diffraction lines,” J. Phys. IVJPICEI 103, 321337.Google Scholar
Louër, D. and Louër, M. (1972). “Trial-and-error method for automatic indexing of powder diagrams,” J. Appl. Crystallogr.JACGAR10.1107/S0021889872009483 5, 271275.CrossRefGoogle Scholar
Lynch, D. E., Smith, G., Byriel, K. A., and Kennard, C. H. L. (1994). “3,5-Dimethoxybenzoic acid and the second polymorph of the 2:1 adduct of 3,5-dinitrobenzoic acid with ethylenediamine,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 50, 12591262.CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898009856 32, 3650.CrossRefGoogle Scholar
Pan, Z., Cheung, E. Y., Harris, K. D. M., Constable, E. C., and Housecroft, C. E. (2004). “Structural aspects of a dendrimer precursor determined directly from powder diffraction data,” Cryst. Growth Des.CGDEFU 4, 451455.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr.JACGAR10.1107/S0021889881009618 14, 357361.CrossRefGoogle Scholar
Peters, K., Peters, E.-M., von Schnering, H. G., Bringmann, G., and Rolfing, K. (1993). “Crystal structure of (E)-1-(1-bromo-2-naphthyl)-2-(3,5-dimethoxyphenyl)ethane,” Z. Kristallogr.ZEKRDZ 207, 125127.Google Scholar
Pettit, G. R., Singh, S. B., Schmidt, J. M., Niven, M. L., Hamel, E., and Lin, C. M. (1988). “Isolation, structure, synthesis, and antimitotic properties of combretastatins B-3 and B-4 from combretum caffrum,” J. Nat. Prod.JNPRDF 51, 517527.CrossRefGoogle ScholarPubMed
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Saad, J. M., Soepadamo, E., Fang, X.-P., McLaughlin, J. L., and Fanwick, P. E. (1991). “(−)-Grandisin from cryptocarya crassinervia,” J. Nat. Prod.JNPRDF 54, 16811683.CrossRefGoogle ScholarPubMed
Shankland, K., Markvardsen, A. J., and David, W. I. F. (2004). “Powder diffraction based structural studies of pharmaceuticals,” Z. Kristallogr.ZEKRDZ 216, 857865.CrossRefGoogle Scholar
Wallet, J. C., Molins, E., and Miravitlles, C. (1995). “1-Phenyl-3-(3,4,5-trimethoxyphenyl)-1,3-propanedione,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 51, 103104.CrossRefGoogle Scholar
Yin, Q. and Zhang, W. Q. (2002). “1-(3,5-Dimethoxyphenyl)-2-{2-[(3,5-dimethoxyphenyl)hydroxymethyl]-4-methoxyphenyl}ethanol,” Acta Crystallogr., Sect. E: Struct. Rep. OnlineACSEBH 58, 13671369.CrossRefGoogle Scholar
Yin, Q., Shi, Y.-M., Liu, H.-M., Li, C.-B., and Zhang, W. Q. (2002). “(E)-3,5,4-Trimethoxystilbene,” Acta Crystallogr., Sect. E: Struct. Rep. OnlineACSEBH 58, 11801181.CrossRefGoogle Scholar
Young, R. A., Editor. (1993). The Rietveld Method (International Union of Crystallography, Oxford).CrossRefGoogle Scholar