Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T23:00:13.618Z Has data issue: false hasContentIssue false

Structural investigation of tungsten oxide nanowires by X-ray diffraction and transmission electron microscopy

Published online by Cambridge University Press:  06 March 2012

Shibin Sun
Affiliation:
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People’s Republic of China
Suyuan Sun
Affiliation:
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People’s Republic of China
Zhenjiang Li*
Affiliation:
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray diffraction, selected area electron diffraction, and high-resolution transmission electron microscope techniques were used to investigate the crystalline structures of one-dimensional tungsten oxide nanowires prepared by the hydrothermal method. The as-synthesized products were found to exhibit increasing crystallinity with increasing reaction time, and tungsten oxide nanowires have crystalline defects, including stacking faults, dislocations, and vacancies. The results on the crystal defects help us to obtain a better understanding of the temperature-dependent morphological evolution of the ultrathin nanowires synthesized under different thermal processes.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeck, S. H., Choi, K. S., Jaramillo, T. F., Stucky, G. D., and McFarland, E. W. (2003). “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films,” Adv. Mater.ADVMEW 15, 12691273.10.1002/adma.200304669CrossRefGoogle Scholar
Lamire, M., Labbe, P., Goreaud, M., and Raveau, B. (1987). “Refinement and new structure analysis of W18O49,” Rev. Chim. Miner.RVCMA8 24, 369381.Google Scholar
Pol, S. V., Pol, V. G., Kessler, V. G., Seisenbaeva, G. A., Solovyov, L. A., and Gedanken, A. (2005). “Synthesis of WO3 nanorods by reacting WO(OMe)4 under autogenic pressure at elevated temperature followed by annealing,” Inorg. Chem.INOCAJ 44, 99389945.10.1021/ic051179nCrossRefGoogle ScholarPubMed
Rothschild, A., Sloan, J., and Tenne, R. (2000). “Growth of WS2 nanotubes phases,” J. Am. Chem. Soc.JACSAT 122, 51695179.10.1021/ja994118vCrossRefGoogle Scholar
Sanrato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J. (2001). “Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications,” J. Am. Chem. Soc.JACSAT 123, 1063910649.10.1021/ja011315xCrossRefGoogle Scholar
Shankar, K., Mor, G. K., Fitzzgerald, A., and Grimes, C. A. (2007). “Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures,” J. Phys. Chem. CJPCCCK 111, 2126.10.1021/jp066352vCrossRefGoogle Scholar
Sun, S. B., Zhao, Y. M., Xia, Y. D., Zou, Z. D., Min, G. H., and Zhu, Y. Q. (2008). “Bundled tungsten oxide nanowires under thermal processing,” NanotechnologyNNOTER 19, 305709 (7pp).10.1088/0957-4484/19/30/305709CrossRefGoogle ScholarPubMed
Sun, S. B., Zou, Z. D., and Min, G. H. (2009). “Synthesis of bundled tungsten oxide nanowires with controllable morphology,” Mater. Charact.MACHEX 60, 437440.10.1016/j.matchar.2008.11.009CrossRefGoogle Scholar
Tenne, R., Margulis, L., Genut, M., and Hodes, G. (1992). “Polyhedral and cylindrical structures of tungsten disulphide,” Nature (London)NATUAS 360, 444446.10.1038/360444a0CrossRefGoogle Scholar
Wang, J. M., Lee, P. S., and Ma, J. (2009). “Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material,” J. Cryst. GrowthJCRGAE 311, 316319.10.1016/j.jcrysgro.2008.11.016CrossRefGoogle Scholar
Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., and Yan, H. Q. (2003). “One-dimensional nanostructures: Synthesis, characterization, and applications,” Adv. Mater.ADVMEW 15, 353389.10.1002/adma.200390087CrossRefGoogle Scholar