Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T02:40:35.513Z Has data issue: false hasContentIssue false

Structural investigation of the nickel 3-methylglutarate from powder diffraction demonstrating adaptability of the inorganic skeleton of MIL-77

Published online by Cambridge University Press:  01 March 2012

Nathalie Guillou
Affiliation:
Institut Lavoisier, UMR CNRS C8637, Université de Versailles St-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, F-78035 Versailles, France
Carine Livage
Affiliation:
Institut Lavoisier, UMR CNRS C8637, Université de Versailles St-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, F-78035 Versailles, France
Julienne Chaigneau
Affiliation:
Institut Lavoisier, UMR CNRS C8637, Université de Versailles St-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, F-78035 Versailles, France
Gérard Férey
Affiliation:
Institut Lavoisier, UMR CNRS C8637, Université de Versailles St-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, F-78035 Versailles, France

Abstract

Ni20[(C6H8O4)20(H2O)8]∙33H2O, a new nickel(II) 3-methylglutarate, was prepared hydrothermally (180 °C, 48 h, autogenous pressure) from a 1:1.5:2:180 mixture of nickel (II) sulphate hexahydrate, 3-methylglutaric acid, sodium hydroxide, and water. It crystallizes in the cubic system (space group P4332, Z=1) with a=16.8488(5) Å and V=4783.1(4) Å3. Its structure was solved from conventional X-ray powder diffraction data. It presents a three-dimensional network of edge-sharing nickel octahedra, lined by deprotonated organic anions. This remarkable oxide network with corrugated 20-membered rings is constructed from homochiral helices. The rings intersect each other to generate large crossing channels full of water along [111].

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr.JACGAR 37, 10251028.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Forster, P. M. and Cheetham, A. K. (2002). “Open-framework nickel succinate [Ni7(C4H4O4)6(OH)2(H2O)2]∙2H2O: A new hybrid material with three-dimensional Ni–O–Ni connectivity,” Angew. Chem., Int. Ed.ACIEF5 41, 457459.3.0.CO;2-W>CrossRefGoogle Scholar
Guillou, N., Livage, C., Chaigneau, J., and Férey, G. (2004). “Structural investigation of a new ‘family’ of chiral 3D nickel glutarates with intersecting 20-membered ring channels,” in Abstracts of the IX European Powder Diffraction Conference, Prague, pp. 9091.Google Scholar
Guillou, N., Livage, C., Drillon, M., and Férey, G. (2003a). “The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered ring channels,” Angew. Chem., Int. Ed.ACIEF5 42, 53145317.Google Scholar
Guillou, N., Livage, C., van Beek, W., Noguès, M., and Férey, G. (2003b). “A layered nickel succinate with unprecedented hexanickel units: Structure elucidation from powder-diffraction data, and magnetic and sportion properties,” Angew. Chem., Int. Ed.ACIEF5 42, 643647.CrossRefGoogle Scholar
Livage, C., Egger, C., and Férey, G. (2001). “Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: The example of cobalt(II) succinate,” Chem. Mater.CMATEX 13, 410414.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalik, J. K. (1981). NBS*AIDS80: A FORTRAN program for crystallographic data evaluation. Natl. Bur. Stand. (U.S.). Techn. Note No. 1141. NBS*AIDS83 is an expanded version of NBS*AIDS80.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, p. 127.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WINPLOTR: A Windows tool for powder diffraction pattern analysis,” J. Mater. Sci. Forum 378–381, 118123.CrossRefGoogle Scholar
Sheldrick, G. M. (1997). SHELXL97, University of Göttigen, Germany.Google Scholar
Vaidhyanathan, R., Natarajan, S., and Rao, C. N. R. (2003). “Aliphatic dicarboxylates with three-dimensional metal-organic frameworks possessing hydrophobic channels,” J. Chem. Soc. Dalton Trans.JCDTBI 172, 14591464.CrossRefGoogle Scholar