Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T11:27:02.940Z Has data issue: false hasContentIssue false

Structural and electrical properties of Nd1.7Ba0.3Ni0.9Cr0.1O4+δ compound

Published online by Cambridge University Press:  17 August 2012

Manel Jammali
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement(UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
Rached Ben Hassen*
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement(UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
Jan Rohlicek
Affiliation:
Institute of Physics ASCR, v.v.i, Na Slovance 2, 18221 Prague 8, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The Nd1.7Ba0.3Ni0.9Cr0.1O4+δ polycrystalline sample was synthesized by the sol–gel process and a subsequent annealing at 1523 K in 1 atm of flowing argon. X-ray diffraction (XRD) analysis and electrical transport properties have been investigated as well. The oxygen non-stoichiometry was determined by iodometric titration. The sample shows adoption of the K2NiF4-type structure based on a tolerance factor calculation. Rietveld refinement of the crystal structure from X-ray powder diffraction data confirmed that Nd1.7Ba0.3Ni0.9Cr0.1O4+δ adopts the tetragonal structure (space group I4/mmm, Z = 2). The room temperature unit-cell parameters are determined to be a = 3.82515(2) and c = 12.47528(6) Å. The reliability factors are: RB = 0.043, Rwp = 0.012 and χ2 = 3.00. The Nd1.7Ba0.3Ni0.9Cr0.1O4+δ compound exhibits a semi-conductive behaviour. The electrical transport mechanism has been investigated and it agrees with the adiabatic small polaron hopping model in the temperature range 313 K ≤ T ≤ 708 K.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbuckle, B. W., Ramanujachary, K. V., Zhang, Z., and Greenblatt, M. (1990). “Investigationson the structural electrical and magnetic properties of Nd2−xSrxNiO4+δ,” J. Solid State Chem. 88, 278290.Google Scholar
Bassat, J. M., Odier, P., and Gervais, F. (1987). “Two-dimensional plasmons in nonstoichiometric La2NiO4,” Phys. Rev. B 35, 71267128.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Buttrey, D. J. and Honig, J. M. (1988). “Influence of nonstoichiometry on the magnetic properties of Pr2NiO4 and Nd2NiO4,” J. Solid State Chem. 72, 3841.Google Scholar
Buttrey, D. J., Honig, J. M., and Rao, C. N. R. (1986). “Magnetic properties of quasi-two-dimensional La2NiO4,” J. Solid State Chem. 64, 287295.Google Scholar
Chaker, H., Roisnel, T., Potel, M., and Ben Hassen, R. (2004). “Structural and electrical changes in NdSrNiO4−δ by substitue nickel with copper,” J. Solid State Chem. 177, 40674072.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Cador, O., Amami, M., and Ben Hassen, R. (2006). “Neutron powder diffraction studies of NdSrNi1−xCuxO4−δ (0 ≤ x ≤ 1) and magnetic properties,” J. Solid State Sci. 8, 142148.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Ceretti, M., and Ben Hassen, R. (2007). “The synthesis, structural characterization and magnetic properties of compounds in the Ln2O3–SrO–NiO–CuO system for Ln = La, Nd, Gd, Dy, Ho and Er,” J. Alloys Compd. 43, 116122.Google Scholar
Chen, C. H., Cheong, S.-W., and Cooper, A. S. (1993). “Charge modulations in La2−xSrxNiO4+δ Ordering of polarons,” Phys. Rev. Lett. 71, 24612464.CrossRefGoogle ScholarPubMed
Demourgues, A., Wattiaux, A., Grenier, J. C., Pouchard, M., Soubeyroux, J. L., Dance, J. M., and Hagenmuller, P. (1993). “Electrochemical preparation and structural characterization of La2NiO4+δ phases (0 ≤ δ ≤ 0.25),” J. Solid State Chem. 105, 458468.Google Scholar
Elcombe, M. M., Kisi, E. H., Hawkins, K. D., White, T. J., Goadman, P., and Matheson, S. (1991). “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr, Sect. B: Struct. Sci. 47, 305314.Google Scholar
Ganguly, P., and Rao, C. N. R. (1984). “Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures,” J. Solid State Chem. 53, 193216.Google Scholar
Gopalakrishnan, J., Colsmann, G., and Reuter, B. (1977). “Studies on the La2−xSrxNiO4 (0 ≤ x ≤ 1) system,” J. Solid State Chem. 22, 145149.CrossRefGoogle Scholar
Hamdi, S., Ouni, S., Chaker, H., Rohlicek, J., and Ben Hassen, R. (2011). “Synthesis, structural and electrical characterizations of DySr5Ni2.4Cu0.6O12−δ,” J. Solid State Chem. 11, 28972901.CrossRefGoogle Scholar
Jammali, M., Chaker, H., Cherif, K., and Ben Hassen, R. (2010). “Investigation on the structural and electrical properties of NdSrNi1−xCrxO4+δ (0.1 ≤ x ≤ 0.9) system,”; J. Solid State Chem. 183, 11941199.Google Scholar
Jorgensen, J. D., Dabrowski, B., Pei, S. Y., Richards, D. R., and Hinks, D. G. (1989). “Structure of the interstitial oxygen defect in La2NiO4 + δ,” Phys. Rev. B 40, 21872199.CrossRefGoogle ScholarPubMed
Millburn, J. E., and Rosseinsky, M. J. (1997). “LaSrCrxNi1−xO4+δ: crystal chemistry, magnetism, and the stabilization of NiI in an oxide environment,” Chem. Mater. 9, 511522.CrossRefGoogle Scholar
Odier, P., Nigara, Y., and Coutures, J. (1985). “Phase relations in the La-Ni-O system: influence of temperature and stoichiometry on the structure of La2NiO4,” J. Solid State Chem. 65, 3240.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “XVth Congress of the International union of Crystallography,” Proceedings of the Satellite Meeting on Powder Diffraction, Toulouse, p. 127.Google Scholar
Rodriguez-Carvajal, J., Martinez, J. L., and Pannetier, J. (1988). “Anomalous structural phase transition in stoichiometric,” Phys. Rev. B 38, 71487151.CrossRefGoogle ScholarPubMed
Sauvet, A.L. and Irvine, J.T.S. (2004). “Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ,” Solid State Ionics 167, 18.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halide and chalcogenides,” Acta Crystallogr. 32, 751767.CrossRefGoogle Scholar
Sreedhar, K. and Rao, C. N. R. (1990). “Electrical and magnetic properties of La2−xSrxNiO4: a tentative phase diagram,” Mater. Res. Bull. 25, 12351242.CrossRefGoogle Scholar
Takeda, Y., Kanno, R., Sakano, M., Yamamoto, O., Takano, M., Bando, Y., Akinaga, H., Takita, K., and Goodenough, J. B. (1990). “Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1),” Mater. Res. Bull. 25, 293306.Google Scholar
Takeda, Y., Nishijima, M., Imanishi, N., Kanno, R., Yamamoto, O., and Takano, M. (1992). “Crystal Chemistry and transport Properties of Nd2−xAxNiO4 (A = Ca, Sr, or Ba, (0 ≤ x ≤ 1.4),” J. Solid State Chem. 96, 7283.Google Scholar
Tonus, F., Bahout, M., Battle, P. D., Hansen, T., Henry, P. F., and Roisnel, T. (2010). “In situ neutron diffraction study of the high-temperature redox chemistry of Ln3−xSr1+xNiCrO8−δ (Ln = La, Nd) under hydrogen,” J. Mater. Chem. 20, 41034115.CrossRefGoogle Scholar