Published online by Cambridge University Press: 29 February 2012
Strain field distribution in a naval platform under dry-dock conditions is complex and represents the cumulative response from residual stress (“locked in” during fabrication of materials and formation of the structure) and static loading stress (e.g., dry-dock loading). The magnitude and distribution of stress fields are a significant concern for the Canadian Navy, where the superposition of applied stresses on residual stresses may adversely affect the performance, safe operational envelope, and service life of naval platforms. Stress analysis was conducted on Canada’s VICTORIA Class submarines using a portable miniature X-ray diffractometer (mXRD) under dry-dock conditions. This paper introduces the concept of “residential stress” as it applies to submarine platforms and discusses the methodology for performing stress analysis with a portable mXRD. The evolution of residential stress during routine pressure hull repairs to Canada’s VICTORIA Class submarines is discussed. In particular, the recent replacement of the diesel exhaust hull and back-up valves on one of the submarines, as well as a pressure hull plate extraction-insertion-weld procedure on another, is discussed.