Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:49:21.601Z Has data issue: false hasContentIssue false

Some further considerations in powder diffraction pattern indexing with the dichotomy method

Published online by Cambridge University Press:  17 November 2014

Daniel Louër*
Affiliation:
Retired from Centre National de la Recherche Scientifique and Université de Rennes 1, France
Ali Boultif
Affiliation:
Faculté des Sciences Exactes, Département de Physique, Laboratoire de Cristallographie, Université de Constantine 1, 25000 Constantine, Algeria
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Some improvements have been introduced in the current computer program for powder diffraction pattern indexing using the dichotomy algorithm. The resulting version, DICVOL14, includes optimizations and extension of scanning limits for triclinic cases, a detailed review of the input data from the indexing solutions, cell centering tests and a new approach for zero-point offset evaluation. The performance of the new version is illustrated with many examples, such as triclinic cases with long axes and dominant zones. Some important parameters in pattern indexing based on the dichotomy algorithm are commented upon, e.g. the precision of data and spurious lines.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Céolin, R., Agafonov, V., Louër, D., Dzyabchenko, V. A., Toscani, S., and Cense, J. M. (1996). “Phenomenology of polymorphism, III: p,T diagram and stability of piracetam polymorphs,” J. Solid State Chem. 122, 186194.CrossRefGoogle Scholar
Cernik, R. J. and Louër, D. (1993). “Indexing unit cells from synchrotron X-ray powder diffraction data,” J. Appl. Crystallogr. 26, 277280.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dong, C., Wu, F., and Chen, H. (1999). “Correction of zero shift in powder patterns using the reflection-pair method,” J. Appl. Crystallogr. 32, 850853.Google Scholar
ICDD (2014). PDF-4+ 2014 (Database), edited by Soorya, Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Progr. Phys. 59, 131234.CrossRefGoogle Scholar
Louër, D. (1992). “Automatic indexing: procedures and applications,” in Accuracy in Powder Diffraction II, edited by Prince, E. and Stalick, J. K., NIST Spec. Pub. No. 846 (US Department of Commerce, Gaithersburg, MD), pp. 92104.Google Scholar
Louër, D. and Boultif, A. (2006). “Indexing with the successive dichotomy method, DICVOL04,” Z. Kristallogr. Suppl. 23, 225230.Google Scholar
Louër, D. and Boultif, A. (2007). “Powder pattern indexing with the dichotomy algorithm,” Z. Kristallogr. Suppl. 26, 191196.Google Scholar
Louër, D. and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. 21, 430437.CrossRefGoogle Scholar
Louër, D. and Louër, M. (1972). “Méthode d'essais et erreurs pour l'indexation automatique des diagrammes de poudre,” J. Appl. Crystallogr. 5, 271275.CrossRefGoogle Scholar
Louër, D. and Vargas, R. (1982). “Indexation automatique des diagrammes de poudre par dichotomies successives,” J. Appl. Crystallogr. 15, 542545.CrossRefGoogle Scholar
Louër, D., Boultif, A., Gotor, F. J., and Criado, J. M. (1990). “X-ray powder diffraction analysis of barium titanyl oxalate tetrahydrate,” Powder Diffr. 5, 162164.Google Scholar
Louër, D., Louër, M., Dzyabchenko, V. A., Agafonov, V., and Céolin, R. (1995). “Structure of a metastable phase of piracetam from X-ray powder diffraction using the atom–atom potential method,” Acta Crystallogr. B 51, 182187.CrossRefGoogle Scholar
McCusker, L. B. and Baerlocher, Ch. (2002). “Chemical information and intuition in solving crystal structures,” in Structure Determination from Powder Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (IUCr/OUP, Oxford), pp. 307323.Google Scholar
Natl Bur. Stand. (US) (19631985). “Standard X-ray Diffraction Powder Patterns,” Monogr. No. 25, Sections 2–21.Google Scholar
Natl Bur. Stand. (US) (1984). “Standard X-ray Diffraction Powder Patterns,” Monogr. No. 25, Section 20.Google Scholar
Papoular, R., Toby, B. H., and Agafonov, V. N. (2011). “A winning pair to study solid pharmaceuticals: the 11-BM synchrotron beamline at the APS and the expo 2009 software,” Abstract, 2011 ICDD Spring Meetings, Newtown Square (PA). Powder Diffr. 26, 193.Google Scholar
Shirley, R. (1980). “Data accuracy for powder indexing,” in Accuracy in Powder Diffraction, edited by Block, S. and Hubbard, C. R., NBS Spec. Pub. No. 567 (US Department of Commerce, Gaithersburg, MD), pp. 361380.Google Scholar
Smith, G. S. (1977). “Estimating the unit-cell volume from one line in a powder diffraction pattern: the triclinic case,” J. Appl. Crystallogr. 10, 252255.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 60–55.CrossRefGoogle Scholar
Vand, V. and Johnson, G. G. (1968). “Indexing of X-ray powder patterns. Part I. The theory of the triclinic case,” Acta Crystallogr. A 24, 543546.CrossRefGoogle Scholar