Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:12:26.408Z Has data issue: false hasContentIssue false

The SESAME materials science beamline for XRD applications

Published online by Cambridge University Press:  30 January 2017

M. Abdellatief*
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
L. Rebuffi
Affiliation:
Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy
H. Khosroabadi
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
M. Najdawi
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
T. Abu-Hanieh
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
M. Attal
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
G. Paolucci
Affiliation:
SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, Jordan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

We present a detailed description of the SESAME Materials Science (MS) beamline for X-ray diffraction (XRD) applications, presently under construction in Allan, Jordan. The beamline is based on components previously installed at the Swiss Light Source, but modifications in the beamline design have been introduced to match the characteristics of the SESAME storage ring. The SESAME MS beamline will accommodate XRD experiments in the energy range between 5 and 25 keV. The beamline ray tracing analysis at 10 keV estimates the flux at the sample to be of the order of 1013 (photons s−1), the energy resolution is about 2 eV and the effective beam size at the sample of 300 × 2800 µm2. Investigations of microstruture will be possible as the instrumental broadening, resulted from simulating the diffraction pattern for a standard material, is of the order of 0.01° at 15 keV. A wide range of applications will be possible at the beamline, such as powder diffraction studies, single crystals and in situ XRD. The commisioning of the beamline is expected to be in the second half of 2017.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

On leave from Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy.

References

Attal, M. (2011). The Reference Optics for SESAME Storage Ring (Report SES-TS-SR-OP) (SESAME synchrotron, Allan).Google Scholar
Attal, M., Huttel, E., Manukyan, K., Saleh, I., Foudeh, D., Makahleh, F., Shehab, M., Jafar, S., Abid, I., Ismail, A., Hamad, A., Abu Hanieh, Th., Mansouri, M., Al Mohammad, H., Sawai, N., and Al-Najdawi, M. (2016). Commissioning of SESAME Booster (IPAC16, Busan, South Korea), p. 28802882.Google Scholar
Gozzo, F., Schmitt, B., Bortolamedi, Th., Giannini, C., Guagliardi, A., Lange, M., Meister, D., Maden, D., Willmott, P., and Patterson, B. D. (2004). “First experiments at the Swiss Light Source Materials Science beamline powder diffractometer,” J. Alloys Compd. 362, 206.Google Scholar
Heidenreich, G. and Patterson, B. D. (2007). “A rotating filter for the wiggler beamline at the Swiss Light Source,” Nucl. Instrum. Methods Phys. Res. A 577, 751.CrossRefGoogle Scholar
Kim, K. J. (1989). “Physics of Particle Accelerators,” in Characteristics of Synchrotron Radiation, edited by Month, M. and Dienes, M. (AIP Conf. Proc., New York), Vol. 184, pp. 565–632.Google Scholar
Patterson, B. D., Abela, R., Auderset, H., Chen, Q., Fauth, F., Gozzo, F., Ingold, G., Kühne, H., Lange, M., Maden, D., Meister, D., Pattison, P., Schmidt, Th., Schmitt, B., Schulze-Briese, C., Shi, M., Stampanoni, M., and Willmott, P. R. (2005). “The materials science beamline at the Swiss Light Source: design and realization,” Nucl. Instrum. Methods Phys. Res. A 540, 42.Google Scholar
Rebuffi, L. and Sanchez del Rio, M. (2016). “ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations,” J. Synchrotron Radiat. 23, 1357.CrossRefGoogle ScholarPubMed
Rebuffi, L., Scardi, P., and del Rio, M. S. (2015). “Design and management of a powder diffraction beamline for Line Profile Analysis: a realistic ray-tracing approach,” Powder Diffr. 30, 56.CrossRefGoogle Scholar
Smith, C. L. (2015). “SESAME for science and peace,” Nat. Photonics 9, 550.Google Scholar
Tanaka, T. (2014). “Numerical methods for characterization of synchrotron radiation based on the Wigner function method,” Phys. Rev. Accel. Beams 17, 060702.Google Scholar
Tanaka, T. and Kitamura, H. (2001). “SPECTRA: a synchrotron radiation calculation code,” J. Synchrotron Radiat. 8, 1221.Google Scholar
Willmott, P. R., Meister, D., Leake, S. J., Lange, M., Bergamaschi, A., BÖge, M., Calvi, M., Cancellieri, C., Casati, N., Cervellino, A., Chen, Q., David, C., Flechsig, U., Gozzo, F., Henrich, B., Jäggi-Spielmann, S., Jakob, B., Kalichava, I., Karvinen, P., Krempasky, J., Lüdeke, A., Lüscher, R., Maag, S., Quitmann, C., Reinle-Schmitt, M. L., Schmidt, T., Schmitt, B., Streun, A., Vartiainen, I., Vitins, M., Wang, X., and Wullschleger, R. (2013). “The Materials Science bamline upgrade at the Swiss Light Source,” J. Synchrotron Radiat. 20, 667.Google Scholar