Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T19:52:46.251Z Has data issue: false hasContentIssue false

RIR - Measurement and Use in Quantitative XRD

Published online by Cambridge University Press:  10 January 2013

Camden R. Hubbard
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.
Robert L. Snyder
Affiliation:
New York State College of Ceramics, Alfred University, Alfred, New York 14802, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Reference Intensity Ratio (RIR) is a general, instrument-independent constant for use in quantitative phase analysis by the X-ray powder diffraction internal standard method. When the reference standard is corundum, RIR is known as I/Ic; These constants are collected in the Powder Diffraction File (1987), can be calculated, and can be measured. Recommended methods for accurate measurement of RIR constants are presented, and methods of using these constants for quantitative analysis are discussed. The numerous, complex constants in Copeland and Bragg's method introduced to account for superimposed lines can be simply expressed in terms of RIR constants and relative intensities. This formalism also permits introduction of constraints and supplemental equations based on elemental analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Alexander, L. E. and Klug, H. P. (1948). Anal. Chem. 20, 886.CrossRefGoogle Scholar
Chung, F. H. (1975). Quantitative Interpretation of X-Ray Diffraction Patterns. III. Simultaneous Determination of a Set of Reference Intensities. J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Clark, G. L. & Reynolds, D. H. (1936). Ind. Eng. Chem. Anal. Ed. 8, 36.CrossRefGoogle Scholar
Cline, J. (1988). An Experimental Verification of A. W. Brindley's Microabsorption Theory. In preparation.Google Scholar
Copeland, L. E. and Bragg, R. H. (1958). Anal. Chem. 30, 196.CrossRefGoogle Scholar
Hubbard, C. R., Evans, E. H. & Smith, D. K. (1976). The Reference Intensity Ratio, I/Ic, for Computer Simulated Patterns. J. Appl. Crystallogr. 9, 169.CrossRefGoogle Scholar
Hubbard, C. R. & Smith, D. K. (1977). In Adv. X-Ray Anal., ed. McMurdie, H. F., Barrett, C. S., Newkirk, J. B. & Ruud, C. O., 20, 63. New York: Plenum.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-Ray Diffraction Procedures. 2nd ed. (a)549553, (b)365–368. New York: J. Wiley and Sons.Google Scholar
Lennox, D. H. (1957). Anal. Chem. 29, 767.Google Scholar
Navias, A. L. (1925). J. Am. Ceram. Soc. 8, 296.CrossRefGoogle Scholar
Powder Diffraction File (1987). Swarthmore, PA: International Centre for Diffraction Data.Google Scholar
Smith, S. T., Snyder, R. L. & Brownell, W. E. (1979). The Quantitative Analysis of Devonian Shales. In Adv. X-Ray Anal., ed. McCarthy, G. J., Barrett, C. S., Leyden, D. E., Newkirk, J. B. & Ruud, C. O., 22, 181. New York: Plenum.Google Scholar
Snyder, R. L., Hubbard, C. R. & Panagiotopoulos, N. C. (1981). AUTO: A Real Time Diffractometer Control System. NBSIR 81-2229. U. S. Dept. of Commerce, Natl. Bur. Stand. Gaithersburg, MD 20899.CrossRefGoogle Scholar
Snyder, R. L., Hubbard, C. R. & Panagiotopoulos, N. C. (1982). A Second Generation Automated Powder Diffraction Control System. In Adv. X-Ray Anal., ed. Russ, J. C., Barrett, C. S., Predecki, P. K. & Leyden, D. E., 25, 245. New York: Plenum.Google Scholar
Visser, J. W. & Wolff, P. M. de (1964). Absolute Intensities. Report 641.109, Technisch Physische Dienst, Delft, Netherlands.Google Scholar