Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T17:17:45.555Z Has data issue: false hasContentIssue false

Rietveld refinement of YbCoO3 prepared from aqueous solution-gel precursor

Published online by Cambridge University Press:  01 March 2012

L. Ben Farhat
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis ElManar 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisia
R. Ben Hassen
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis ElManar 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisia
L. Dammak
Affiliation:
LMEI, Universite Paris XII, 61, Avenue du Général de Gaulle, 94010 Créteil, France

Abstract

A polycrystalline sample of YbCoO3 was prepared using a water-soluble complex method at relatively low temperatures. Common chelating ligands such as citric acid were employed for the synthesis of complex-based precursors, followed by thermal decomposition of the precursors at high temperatures. X-ray diffraction data were collected and the crystal structure was refined by the Rietveld method. The structure of YbCoO3 can be described as a sesquioxide C-M2O3-like structure with space group Ia-3 and unit-cell parameter a=10.4470 (2). The Yb3+ and the Co3+ cations are found to preferentially occupy the two nonequivalent 8d and 24d sites, respectively. The two independent atoms Yb/Co have octahedral coordination; however, the degrees of distortion of their coordination polyhedron are different. The relationship between the title compound and the orthorhombic Perovskite structure of YbCoO3 reported in the literature is established.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, H. (1988). Technol. Jpn. 21, 32.Google Scholar
Demazeau, G., Pouchard, M., and Hagenmuller, P. (1974). “Sur de nouveaux composés oxygénés du cobalt +III dérivés de la perovskite,” J. Solid State Chem.JSSCBI10.1016/0022-4596(74)90075-9 9, 202209.CrossRefGoogle Scholar
Gruber, J. B., Justice, B. H., Westrum, E. F. Jr., and Zandi, B. (2002). “Revisiting the thermophysical properties of the A-type hexagonal lanthanide sesquioxides between temperatures of 5 K and 1000 K,” J. Chem. Thermodyn.JCTDAF 34, 457473.CrossRefGoogle Scholar
Hoekstra, H. R. and Gingerich, K. A. (1964). “High-pressure B-type polymorphs of some rare-earth sesquioxides,” Sci. Mag. 146, 11631164.Google ScholarPubMed
Justice, B. H. and Westrum, E. F. Jr. (1963a). “Thermophysical properties of the lanthanide oxides. I. Heat capacities, thermodynamic properties, and some energy levels of lanthanum(III) and neodymium(III) oxides from 5 to 350°K,” J. Phys. Chem.JPCHAX 67, 339345.CrossRefGoogle Scholar
Justice, B. H. and Westrum, E. F. Jr. (1963b). “Thermophysical properties of the lanthanide oxides. II. Heat capacities, thermodynamic properties, and some energy levels of samarium(III), gadolinium(III), and ytterbium(III) oxides from 10 to 350°K,” J. Phys. Chem.JPCHAX 67, 345351.CrossRefGoogle Scholar
Justice, B. H. and Westrum, E. F. Jr. (1963c). “Thermophysical properties of the lanthanide oxides. III. Heat capacities, thermodynamic properties, and some energy levels of dysprosium(III), holmium(III), and erbium(III) oxides,” J. Phys. Chem.JPCHAX 67, 659665.Google Scholar
Justice, B. H. and Westrum, E. F. Jr. (1969). “Thermophysical properties of the lanthanide oxides. V. Heat capacity, thermodynamic properties, and energy levels of cerium(III) oxide,” J. Phys. Chem.JPCHAX 73, 19591962.CrossRefGoogle Scholar
Justice, B. H., Westrum, E. F. Jr., Chang, E., and Radebaugh, R. J. (1969). “Thermophysical properties of the lanthanide oxides. IV. Heat capacities and thermodynamic properties of thulium(III) and lutetium(III) oxides. Electronic energy levels of several lanthanide(III) ions,” J. Phys. Chem.JPCHAX 73, 333340.CrossRefGoogle Scholar
Kofstad, P. (1972). Nonstoichiometry Diffusion and Electrical Conductivity in Binary Metal Oxided (Wiley-Interscience, New York).Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.CrossRefGoogle Scholar
Mitric, M., Antic, B., Balanda, M., Rodic, D., and Lj Napijalo, M. (1997). “An X-ray diffraction and magnetic susceptibility study of YbxY2−xO3,” J. Phys.: Condens. MatterJCOMEL10.1088/0953-8984/9/20/009 9, 41034111.Google Scholar
Rietveld, H. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “Collected Abstracts of Powder Diffraction Meeting,” Toulouse, France, p. 127.Google Scholar
Roisnel, T. (2001). “WinPLOTR program, Laboratoire de chimie du solide et inorganique moléculaire,” UMR 6511 CNRS-Université de Rennes I, Institut de chimie de Rennes, Rennes cedex, France.Google Scholar
Shirley, R. (2000). “CRYSFIRE program, An Interactive Powder Indexing Support Program, version 9, 34g (QBasic),” University of Surrey Guild-ford, Surrey, England.Google Scholar
Wang, H. M., Simmonds, M. C., and Rodenburg, J. M. (2002). “Manufacturing of YbAG coatings and crystallization of the pure and Li2O-doped Yb2O3-Al2O3 system by a modified sol-gel method,” Mater. Chem. Phys.MCHPDR 77, 802807.CrossRefGoogle Scholar
Young, R. A. and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr.JACGAR10.1107/S002188988201231X 15, 430438.CrossRefGoogle Scholar
Zheng, Y. S., Knowles, K. M., Vieira, J. M., Lopes, A. B., and Oliveira, F. J. (2001). “Microstructure, toughness and flexural strength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbium oxide,” J. Microsc.JMICAR 201, 238249.CrossRefGoogle ScholarPubMed