Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T14:57:02.803Z Has data issue: false hasContentIssue false

Rietveld refinement of X-ray powder diffraction data of Ca0.925Ce0.075Mn0.9Fe0.1O3 polycrystalline material

Published online by Cambridge University Press:  28 August 2018

G. Murugesan*
Affiliation:
Department of Physics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
K. R. Nandan
Affiliation:
Department of Physics, St. Francis de Sales College, Electronics City, Bangalore 560 100, Karnataka, India
S. Kalainathan
Affiliation:
Centre for Crystal Growth, School of Advanced Sciences, VIT, Vellore 632004, Tamil Nadu, India
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Polycrystalline Ca0.925Ce0.075Mn0.9Fe0.1O3 were prepared by sol-gel reaction at 1073 K. The compound was analyzed by a powder X-ray diffraction technique and found to be in single phase. The unit-cell parameters and atomic positions were refined using General Structure Analysis to an orthorhombic structure with space group Pnma (#62) a = 5.281 90 (33) Å, b = 7.4968 (45) Å, and c = 5.302 90 (32) Å.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dai, N., Feng, J., Wang, Z., Jiang, T., Sun, W., Qiao, J., and Sun, K. (2013). “Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs”, J. Mater. Chem. A 45, 1414714153.Google Scholar
Flahaut, D., Mihara, T., Funahashi, R., Nabeshima, N., Lee, K., Ohta, H., and Koumoto, K. (2006). “Thermoelectrical properties of A-site substituted Ca1−x Rex MnO3 system”, J. Appl. Phys. 100, 084911–1.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National laboratory.Google Scholar
Liu, X. J., Li, Z. Q., Wu, P., Bai, H. L., and Jiang, E. Y. (2007). “The effect of Fe doping on structural, magnetic and electrical transport properties of CaMn1−xFexO3 (x = 0–0.35)”, Solid State Commun. 142, 525530.Google Scholar
Momma, K., and Izumi, F. (2013). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, J. Appl. Crystallogr. 44, 12721276.Google Scholar
Nandan, K. R., and Ruban Kumar, A. (2016) “Electrical properties of Ca0.925Ce0.075Mn1−xFexO3 (x = 0.1–0.3) prepared by sol–gel technique”, J. Mater. Sci.: Mater. Electron. 27, 1317913191.Google Scholar
Paszkowicz, W., and Piętosa, J. (2007). “On the orthorhombic distortion of CaMnO3−δ,” Institute of Physics, Polish Academy of Sciences, al. Lotnikow, 32, 02–668.Google Scholar
Paszkowicz, W., Piętosa, J., Woodley, S. M., Dłużewski, P. A., Kozłowski, M., and Martin, C. (2010). “Lattice parameters and orthorhombic distortion of CaMnO3”, Powder Diffr. 25, 4659.Google Scholar
Singh, B. (2015). “Structural, transport, magnetic and magnetoelectric properties of CaMn1−xFexO3−δ (0.0 ≤ x ≤ 0.4)”, RSC Adv. 5, 3993839945.Google Scholar
Wang, Y., Sui, Y., and Su, W. (2008). “High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R = La, Pr, …, Yb)”, J. Appl. Phys. 104, 093703.Google Scholar
Zhao, S, Zheng, J., Jiang, F., Song, Y., Sun, M., and Song, X. (2015). “Co-precipitation synthesis and microwave absorption properties of CaMnO3 doped by La and Co”, J. Mater. Sci.: Mater. Electron. 11, 86038608.Google Scholar
Supplementary material: File

Murugesan et al. supplementary material

Murugesan et al. supplementary material 1

Download Murugesan et al. supplementary material(File)
File 54.7 KB