Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:58:03.209Z Has data issue: false hasContentIssue false

Rietveld refinement of the crystal structures of hexagonal Y6Cr4+xAl43−x (x=2.57) and tetragonal YCr4−xAl8+x (x=1.22)

Published online by Cambridge University Press:  10 January 2013

R. Černý
Affiliation:
Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
K. Yvon
Affiliation:
Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
T. I. Yanson
Affiliation:
Department of Inorganic Chemistry, L‘viv University, 6, Lomonosova street, 290005 L'viv 5, Ukraine
M. B. Manyako
Affiliation:
Department of Inorganic Chemistry, L‘viv University, 6, Lomonosova street, 290005 L'viv 5, Ukraine
O. I. Bodak
Affiliation:
Department of Inorganic Chemistry, L‘viv University, 6, Lomonosova street, 290005 L'viv 5, Ukraine

Abstract

Y6Cr4+xAl43−x (x = 2.57); space group P63/mcm, a = 10.8601(1) Å, c = 17.6783(3) Å, V= 1805.7(1) Å3, Z=2; isostructural to Yb6Cr4+xAl43−x, (x=1.76) with two aluminium sites partially occupied by chromium (44% and 27% Cr). YCr4−xAl8+x (x=1.22); space group I4/mmm, a = 9.0299(2) Å, c = 5.1208(2) Å, V=417.55(3) Å3, Z=2, disordered variant of CeMn4Al8 with one chromium site (8f) partially occupied by aluminium (33% Al); X-ray powder diffraction data were collected on a well-crystallized multiphase sample containing 43 wt.% of Y6Cr4+xAl43−x, 27 wt.% of Y2Cr8−xAl16+x, 16 wt.% of Al, 13 wt.% of YAl3, and traces of Y2O3. Structure refinement converged at Rwp = 2.0% and RB = 3.5, 3.6% resp. for a total of 78 parameters and 1190 reflections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buschow, K. H. J. (1988). “Structure and properties of some novel ternary Fe-rich rare earth intermetallics,” J. Appl. Phys. 63, 31303135.CrossRefGoogle Scholar
Čapkovà, P., and Valvoda, V. (1974). “Preferred orientation in powder samples of magnesium and magnesium-cadmium alloys,” Czech. J. Phys. B 24, 891900.CrossRefGoogle Scholar
Cordier, G., Czech, E., Ochmann, H., and Schäfer, H. (1984). “Neue übergangsmetallaluminide des Calciums,” J. Less-Comm. Met. 99, 173185.CrossRefGoogle Scholar
Gueramian, M., Yvon, K., and Hulliger, F. (1991). “Structure and magnetic properties of the ThMn12-type compounds RFe12−xRex (R=Ce-Nd, Sm, Gd-Tm, Lu, Y, Th, U),” J. Less-Comm. Met. 175, 321330.CrossRefGoogle Scholar
Hill, R. J. (1991). “Expanded Use of the Rietveld Method in Studies of Phase Abundance in Multiphase Mixtures,” Powder Diffr. 6, 7477.CrossRefGoogle Scholar
Hill, R. J., and Hack, H. D. (1987). “The Use of the Durbin-Watson d Statistic in Rietveld Analysis,” J. Appl. Cryst. 20, 356361.CrossRefGoogle Scholar
Rykhal', R. M., Zarechnyuk, O. S., and Mats'kiv, O. P. (1979). “The isothermal section at 500 °C of the ternary systems Dy–V–Al and Dy–Cr–Al,” Visn. L'viv Univ, Ser. Khim. 21, 4649.Google Scholar
Villars, P., and Calvert, L. D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH 44073, USA).Google Scholar
Wiles, D. B., and Young, R. A. (1981). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Cryst. 14, 149;CrossRefGoogle Scholar
see also Sakthivel, A., and Young, R. A. (1990), Program DBWS-9006 (School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA).Google Scholar
Yanson, T. I., Manyako, M. B., Bodak, O. I., Zarechnyuk, O. S., Gladyshevskii, R. E., Černý, R., and Yvon, K. (1994). “Crystal structure of hexagonal Yb6Cr4+xAl43−x (x= 1.76),” Acta Cryst. C 50 (accepted).Google Scholar
Zarechnyuk, O. S. (1966). “The ternary compounds with superstructure from ThMn12 type in the systems yttrium-transition metal–aluminium,” Dopovidi Akad. Nauk Ukr. RSR 6, 767769.Google Scholar
Zarechnyuk, O. S., Rykhal, R. M., and German, N. V. (1971). “X-ray investigation of the alloys rich in aluminium in Y–V–Al and Y–Cr–Al systems,” Visn. L'viv Univ., Ser. Khim. 12, 1012.Google Scholar
Zarechnyuk, O. S., Yanson, T. I., Ostrovskaya, O. I., and Shevchuk, L. P. (1988). “The isothermal section of the (Sm, Tb)-(V, Cr)-Al systems with the content of the Rare Earth Metals 0–0.33 at% at 770 K,” Visn. L'viv Univ., Ser. Khim. 29, 4447.Google Scholar