Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T00:51:19.987Z Has data issue: false hasContentIssue false

Rietveld refinement of a triclinic structure for synthetic Na-birnessite using synchrotron powder diffraction data

Published online by Cambridge University Press:  05 March 2012

Jeffrey E. Post
Affiliation:
Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560-0119
Peter J. Heaney
Affiliation:
Department of Geosciences, 309 Deike, Pennsylvania State University, University Park, Pennsylvania 16802
Jonathan Hanson
Affiliation:
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11793

Abstract

Rietveld refinement using synchrotron powder X-ray diffraction data revealed that the crystal structure of synthetic Na-birnessite is triclinic (C1), not monoclinic as was previously reported. The Mn–O octahedra have elongated axial bonds, consistent with Jahn–Teller distortion resulting from partial occupancy by Mn3+. Mean Mn–O distances indicate that Mn sites are ∼2/3 Mn4+ and ∼1/3 Mn3+. The interlayer Na cations and H2O molecules occupy a split site that shows evidence of considerable disorder.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelo, C. A. J.and Postma, D. (1999). “A consistent model for surface complexation on birnessite (-MnO2) and its application to a column experiment,” Geochim. Cosmochim. Acta GCACAK 63, 30393048. gca, GCACAK CrossRefGoogle Scholar
Banerjee, D.and Nesbitt, H. W. (1999). “Oxidation of aqueous Cr(III) at birnessite surfaces: constraints on reaction mechanism,” Geochim. Cosmochim. Acta GCACAK 63, 16711687. gca, GCACAK CrossRefGoogle Scholar
Bauer, W. H. (1976). “Rutile-type compounds. V. Refinement of MnO2 and MgF2,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 32, 22002204. acb, ACBCAR CrossRefGoogle Scholar
Brock, S. L., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H., and Suib, S. L. (1998). “A review of porous manganese oxide materials,” Chem. Mater. CMATEX 10, 26192628. cma, CMATEX CrossRefGoogle Scholar
Burns, R. G. and Burns, V. M. (1976). “Mineralogy of ferromanganese nodules,” in Marine Manganese Deposits, edited by G. P. Glasby (Elsevier, Amsterdam).Google Scholar
Ching, S., Landrigan, J. A., Jorgenson, M. L., Duan, N., and Suib, S. L. (1997). “Gel synthesis of layered birnessite-type manganese oxides,” Inorg. Chem. INOCAJ 36, 883. ino, INOCAJ CrossRefGoogle Scholar
Cornell, R. M.and Giovanoli, R. (1988). “Transformation of hausmannite into birnessite in alkaline media,” Clays Clay Miner. CLCMAB 36, 249257. cld, CLCMAB CrossRefGoogle Scholar
Dixon, J. B., Golden, D. C., Uzochukwu, G. A., and Chen, C. C. (1986). “Soil manganese oxides,” in Soil Colloids, Structures and Associations in Soil Aggregates, edited by M. H. B. Hayes and A. Herbillon (NATO Workshop, Ghent, Belgium).Google Scholar
Drits, V. A., Silvester, E., Gorshkov, A. I., and Manceau, A. (1997). “Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction,” Am. Mineral. AMMIAY 82, 946961. amn, AMMIAY CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900. acr, JACGAR CrossRefGoogle Scholar
Golden, D. C., Dixon, J. B., and Chen, C. C. (1986). “Ion exchange, thermal transformations, and oxidizing properties of birnessite,” Clays Clay Miner. CLCMAB 34, 511520. cld, CLCMAB CrossRefGoogle Scholar
Golden, D. C., Chen, C. C., and Dixon, J. B. (1987). “Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment,” Clays Clay Miner. CLCMAB 35, 271281. cld, CLCMAB CrossRefGoogle Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional detector software: From real detector to idealized image or two-theta scan,” High Press. Res. HPRSEL 14, 235248. hpr, HPRSEL CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1986). “GSAS-General Structure Analysis System,” Los Alamos National Laboratory Report No. LAUR 86-748.Google Scholar
Leroux, F., Le Gal La Salle, A., Guyomard, D., and Piffard, Y. (2001). “Interleaved oxovanadium cations in the rancieite manganese oxide δ-MnO2,” J. Mater. Chem. JMACEP 11, 652656. jtc, JMACEP CrossRefGoogle Scholar
Luo, J., Huang, A., Park, S. H., Suib, S. L., and O’Young, C. (1998). “Crystallization of sodium-birnessite and accompanied phase transformation,” Chem. Mater. CMATEX 10, 15611568. cma, CMATEX CrossRefGoogle Scholar
McKeown, D. A.and Post, J. E. (2001). “Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy,” Am. Mineral. AMMIAY 86, 701713. amn, AMMIAY CrossRefGoogle Scholar
Nesbitt, H. W.and Banerjee, D. (1998). “Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides, and constraints on the mechanism of MnO2 precipitation,” Am. Mineral. AMMIAY 83, 305315. amn, AMMIAY CrossRefGoogle Scholar
Paterson, E., Clarke, D. R., Russell, J. D., and Swaffield, R. (1986). “Cation exchange in synthetic manganates II. The structure of an alkylammonium-saturated phyllomanganate,” Clay Miner. CLMIAF 21, 957964. clj, CLMIAF CrossRefGoogle Scholar
Post, J. E.and Appleman, D. E. (1994). “Crystal structure refinement of lithiophorite,” Am. Mineral. AMMIAY 79, 370374. amn, AMMIAY Google Scholar
Post, J. E.and Bish, D. L. (1989). “Rietveld refinement of crystal structures using powder X-ray diffraction data,” Rev. Mineral. RMINDF 20, 277308. rmi, RMINDF Google Scholar
Post, J. E.and Veblen, D. R. (1990). “Crystal structure determinations of three synthetic birnessites using TEM and the Rietveld method,” Am. Mineral. AMMIAY 75, 477489. amn, AMMIAY Google Scholar
Potter, R. M.and Rossman, G.R. (1979). “The manganese- and iron-oxide mineralogy of desert varnish,” Chem. Geol. CHGEAD 25, 7994. chg, CHGEAD CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalocogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767. aca, ACACBN CrossRefGoogle Scholar
Silvester, E., Manceau, A., and Drits, V. A. (1997). “Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy,” Am. Mineral. AMMIAY 82, 962978. amn, AMMIAY CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Taylor, R. M., McKenzie, R. M., and Norrish, K. (1964). “The mineralogy and chemistry of manganese in some Australian soils,” Austral. J. Soil Res. ASORAB 2, 235248. 9k2, ASORAB CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 20, 7983. acr, JACGAR CrossRefGoogle Scholar