Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T17:59:27.108Z Has data issue: false hasContentIssue false

Rietveld quantitative phase analysis with molybdenum radiation

Published online by Cambridge University Press:  15 October 2014

Ana Cuesta
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain
Gema Álvarez-Pinazo
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain
Marta García-Maté
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain
Isabel Santacruz
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain
Miguel A. G. Aranda
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain ALBA-CELLS Synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona, Spain
Ángeles G. De la Torre
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N, 29071 Málaga, Spain
Laura León-Reina*
Affiliation:
Servicios Centrales de Investigación SCAI, Universidad de Málaga, 29071 Málaga, Spain
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Building materials are very complex samples of worldwide importance; hence quantitative knowledge of their mineralogical composition is necessary to predict performances. Rietveld quantitative phase analysis (RQPA) allows a direct measurement of the crystalline phase contents of cements. We highlight in this paper the use of laboratory X-ray powder diffraction (LXRPD) employing high-energy radiation, molybdenum (Mo), for attaining the RQPA of cements. Firstly, we evaluate the accuracy of RQPA employing a commercial calcium sulfoaluminate clinker with gypsum. In addition to Mo 1 and Mo 1,2 radiations, Cu and synchrotron patterns are also analyzed for the sake of comparison. Secondly, the assessment of the accuracy of RQPA results obtained using different radiations (synchrotron, Mo, and Cu) and geometries (reflection and transmission) is performed by analyzing two well-known commercial samples. As expected, for LXRPD data, accuracy in the RQPA results improves as the irradiated volume increases. Finally, three very complex aged hydrated cements have been analyzed using MoKα1-LXRPD and Synchrotron-XRPD. The main overall outcome of this work is the benefit for RQPA of using strictly monochromatic Mo 1 radiation. Best laboratory results arise from Mo 1 data as the effective tested volume is much increased but peak overlapping is not swelled.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Pinazo, G., Santacruz, I., León-Reina, L., Aranda, M. A. G., and De la Torre, A. G. (2013). “Hydration reactions and mechanical strength developments of iron-rich sulfobelite eco-cements,” Ind. Eng. Chem. Res. 52, 1660616614.CrossRefGoogle Scholar
Alvarez-Pinazo, G., Cuesta, A., García-Maté, M., Santacruz, I., Losilla, E. R., Sanfélix, S. G., Fauth, F., Aranda, M. A. G., and De la Torre, A. G. (2014). “In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction,” Cem. Concr. Res. 56, 1219.CrossRefGoogle Scholar
Aranda, M. A. G. and De la Torre, A. G. (2013) “Sulfoaluminate cement,” in Eco-efficient Concrete, edited by Pacheco-Torgal, F., Jalali, S., Labrincha, J. and John, V. M. (Woodhead Publishing Limited, Cambridge), pp. 488522.Google Scholar
Aranda, M. A. G., De la Torre, A. G., and León-Reina, L. (2012). “Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products,” Rev. Mineral. Geochem. 74, 169209.Google Scholar
Bellmann, F., Damidot, D., Moser, B., and Skibsted, J. (2010). “Improved evidence for the existence of intermediate phase during hydration of tricalcium silicate,” Cem. Concr. Res. 40, 875884.Google Scholar
Buhrke, V. E., Jenkins, R., and Smith, D. K. (Eds.) (1998). A practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York).Google Scholar
Cromer, D. T. and Liberman, D. A. (1981). “Anomalous dispersion calculations near to an on the long-wavelength side of an absorption edge,” Acta Crystallogr. A37, 267268.Google Scholar
Delhez, R. and Mittemeijer, E. J. (1975). “An improved α2 elimination,” J. Appl. Crystallogr. 8, 609611.CrossRefGoogle Scholar
De la Torre, A. G. and Aranda, M. A. G. (2003). “Accuracy in Rietveld quantitative phase analysis of portland cements,” J. Appl. Crystallogr. 36, 11691176.Google Scholar
De la Torre, A. G., Bruque, S., Campo, J., and Aranda, M. A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses,” Cem. Concr. Res. 32, 13471356.Google Scholar
De la Torre, A. G., Lopez-Olmo, M. G., Alvarez-Rua, C., Garcia-Granda, S., and Aranda, M. A. G. (2004). “Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses,” Powder Diffr. 19, 240246.CrossRefGoogle Scholar
De la Torre, A. G., De Vera, R. N., Cuberos, A. J. M., and Aranda, M. A. G. (2008). “Crystal structure of low magnesium-content alite: application to Rietveld quantitative phase analysis,” Cem. Concr. Res. 38, 12611269.CrossRefGoogle Scholar
Dinnebier, R. E. and Billinge, S. J. L. (Eds.) (2008). Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge).Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Crystallogr. 19, 267272.Google Scholar
Dunstetter, F., De Noirfontaine, M.-N., and Courtial, M. (2006). “Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified análisis,” Cem. Concr. Res. 36, 3953.Google Scholar
Elton, N. J. and Salt, P. D. (1996). “Particle statistics in quantitative X-ray diffractometry,” Powder Diffr. 11, 218229.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergente,” J. Appl. Crystallogr. 27, 892900.Google Scholar
García-Maté, M., Santacruz, I., De la Torre, A. G., León-Reina, L., and Aranda, M. A. G. (2012). “Rheological and hydration characterization of calcium sulfoaluminate cement pastes,” Cem. Concr. Compos. 34, 684691.CrossRefGoogle Scholar
Hill, R. J. and Madsen, I. C. (2002). “Sample preparation, instrument selection and data collection,” in Structure Determination from Powder Diffraction Data, edited by David, W., Shankland, K., McCusker, L. and Baerlocher, C. (Oxford University Press, New York).Google Scholar
Klug, H. P. and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York), 2nd ed., p. 618.Google Scholar
Knapp, M., Peral, I., Nikitina, L., Quispe, M., and Ferrer, S. (2011). “Technical concept of the materials science beamline at ALBA,” Z. Kristallogr. Proc. 1, 137142.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86–748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
León-Reina, L., De la Torre, A. G., Porras-Vázquez, J. M., Cruz, M., Ordonez, L. M., Alcobé, X., Gispert-Guirado, F., Larrañaga-Varga, A., Paul, M., Fuellmann, T., Schmidt, R., and Aranda, M. A. G. (2009). “Round Robin on Rietveld quantitative phase analysis of Portland cements,” J. Appl. Crystallogr. 42, 906916.Google Scholar
León-Reina, L., Compana, J. M., De la Torre, A. G., Moreno, R., Ochando, L. E., and Aranda, M. A. G. (2011). “Powder diffraction analysis of gemstone inclusions,” Powder Diffr. 26, 4852.Google Scholar
Le Saout, G., Kocaba, V. and Scrivener, K. (2011). “Application to the Rietveld method to the analysis of anhydrous cement,” Cem. Concr. Res. 41, 133148.Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on powder diffraction Round Robin on quantitative phase analysis: samples 1a to 1h,” J. Appl. Crystallogr. 34, 409426.CrossRefGoogle Scholar
Mitchell, L. D., Margeson, J. C., and Whitfield, P. S. (2006). “Quantitative Rietveld analysis of hydrated cementatious systems,” Powder Diffr. 21, 111113.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α1: α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254259.Google Scholar
Rajczyk, K. and Nocun-Wczelik, W. (1992). “Thermal methods and microcalorimetry application in the studies of low energy cements,” J. Therm. Anal. Calorim. 38, 771775.Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M., and Agron-Olshina, N. (2002). “Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals,” J. Appl. Crystallogr. 35, 383400.Google Scholar
Scrivener, K. L. and Nonat, A. (2011). “Hydration of cementitious materials, present and future,” Cem. Concr. Res. 41, 651665.Google Scholar
Scrivener, K. L., Fullmann, T., Gallucci, E., Walenta, G., and Bermejo, E. (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods,” Cem. Concr. Res. 34, 15411547.CrossRefGoogle Scholar
Smith, D. K. (2001). “Particle statistics and whole-pattern methods in quantitative X-ray powder diffraction analysis,” Powder Diffr. 16, 186191.Google Scholar
Stutzman, P. (2005). “Powder diffraction analysis of hydraulic cements: ASTM Rietveld round-robin results on precision,” Powder Diffr. 20, 97100.Google Scholar
Thompson, P., Cox, D. E., and Hasting, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.Google Scholar