Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T23:19:37.109Z Has data issue: false hasContentIssue false

A Review of the XRD Data of the Phases Present in the CaO-SrO-CuO System

Published online by Cambridge University Press:  10 January 2013

Brian J. Reardon
Affiliation:
Alfred University, Binns-Merrill Hall, Alfred, New York 14802, U.S.A.
Camden R. Hubbard
Affiliation:
Metals and Ceramics Division, Bldg. 4515, MS 6064, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6064, U.S.A.

Abstract

X-ray powder patterns for the phases in the CaO-SrO-CuO ternary system, along with the corresponding crystal structures, were obtained from the literature and from the Powder Diffraction File. Available XRD patterns were compared with each other and with a calculated pattern for each phase, yielding a recommended reference pattern. The simulated powder patterns presented here deal with the phases found within the (Ca,Sr)O, (Ca,Sr)2CuO3, (Ca,Sr)14Cu24O41, (Ca,Sr)CuO2, (Ca,Sr)Cu2O3, and (Ca,Sr)Cu2O2 solid solution series and are recommended for the Powder Diffraction File (PDF).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breuer & Eysel (1982-A). JCPDS Grant-in-Aid Report.Google Scholar
Breuer & Eysel (1982-B). JCPDS Grant-in-Aid Report.Google Scholar
Breuer & Eysel (1981). JCPDS Grant-in-Aid Report.Google Scholar
Carrilo-Cabrera, W. & Göpel, W. (1989). Phys. C 161, 373.Google Scholar
Evans, H. Jr., Appleman, D. & Handkwerker, D. (1963). Report No. PB216188. U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Road, Springfield, VA 22151.Google Scholar
Hoppe, V.R. (1969). Zeit. Anorg. Allge. Chemie 370, 144.CrossRefGoogle Scholar
Hoshizaki, H. et al. (1990). Jpn. J. Appl. Phys. 29, 1444.CrossRefGoogle Scholar
Klockow & Eysel (1988). JCPDS Grant-in-Aid Report.Google Scholar
Klockow & Eysel (1987). JCPDS Grant-in-Aid Report.Google Scholar
Lee, C. et al. (1990). J. Mater. Res. 5, 7, 1403.CrossRefGoogle Scholar
Maeda, H. et al. (1988). Jpn. J. Appl. Phys. 27, L209.CrossRefGoogle Scholar
Majewski, P. et al. (To be published). “Phase Equilibrium in the System Bi2O3-SrO-CaO-CuO. A Tool for Processing the High Tc Superconducting Bismuth Compounds” Zeit. fur Metallkunde.Google Scholar
Matheis, D. & Snyder, R. (1990). Pow. Diff. 5, 1, 8.CrossRefGoogle Scholar
McCarron, E. III et al. (1988). Mat. Res. Bull. 23, 1355.CrossRefGoogle Scholar
McMurdie, H. et al. (1986). Pow. Diff. 1, 3, 265.CrossRefGoogle Scholar
Muller-Buschbaum, H. (1987). Angew. Chem. Int. Ed. Eng. 16, 674.CrossRefGoogle Scholar
Obst & Munchberg (1968). Tonid. Zeitg. 6, 92.Google Scholar
Oka, Y. et al. (1989). Jpn. J. Appl. Phys. 28, 5, L801.CrossRefGoogle Scholar
Popp & Eysel (1987). JCPDS Grant-in-Aid Report.Google Scholar
Rawn, C.J. Master's Thesis, George Mason University, Fall 1991.Google Scholar
Reardon, B. & Hubbard, C. (1991). A Comprehensive Review of the XRD Data of the Primary and Secondary Phases Present in the BSCCO Superconductor System (Part I: The CaO-SrO-CuO Ternary System), Oak Ridge National Laboratory Technical Manuscript, ORNL/TM-11948, 12/1991.CrossRefGoogle Scholar
Roth, R. et al. (1989-A). J. Am. Ceram. Soc. 72, 8, 1545.CrossRefGoogle Scholar
Roth, R. et al. (1989-B). J. Am. Ceram. Soc. 72, 3, 395.CrossRefGoogle Scholar
Roth, R. et al. (1990). J. Res. Natl. Inst. Stand. Tech 95, 291.CrossRefGoogle Scholar
Roth, R. et al. (1991). J. Am. Ceram. Soc. 74, 9, 2148.CrossRefGoogle Scholar
Schultze, K. et al. (To be published). “Phase Equilibrium in the System Bi2O3-SrO-CaO-CuO. A Tool for Processing the High Tc Superconducting Bismuth Compounds” Zeit. fur Metallkunde.Google Scholar
Siegrist, T. et al. (1988-A). Mat. Res. Bull. 23, 1429.CrossRefGoogle Scholar
Siegrist, T. et al. (1988-B). Nature 334, 21.CrossRefGoogle Scholar
Smith, D. & Smith, K. (1987). Micro-Powd: A Program for Calculating X-ray Powder Diffraction Patterns on a P.C., Copyright 1987, Materials Data Inc.Google Scholar
Smith, G. & Snyder, R. (1979). J. Appl. Crystallogr. 12, 60.CrossRefGoogle Scholar
Susakura, H. et al. (1989). Jpn. J. App. Phys. 28, 7, L1163.CrossRefGoogle Scholar
Swanson, H., Gilfrich, N. & Ugrinic, G. (1955). Natl. Bur. Stand. (U.S.) Circ. 529, 5, 69.Google Scholar
Swanson, H. et al. (1967). Natl. Bur. Stand. Monog. 25, 5, 43.Google Scholar
Teske, V.C.L. & Muller-Buschbaum, H. (1969-A). Zeit. Anorg. Allge, Chemie, 371, 325.CrossRefGoogle Scholar
Teske, V.C.L. & Muller-Buschbaum, H. (1970-A). Zeit. Anorg. Allge, Chemie, 379, 234.CrossRefGoogle Scholar
Teske, V.C.L. & Muller-Buschbaum, H. (1969-B). Zeit. Anorg. Allge, Chemie, 370, 134.CrossRefGoogle Scholar
Teske, V.C.L. & Muller-Buschbaum, H. (1970-B). Zeit. Anorg. Allge, Chemie, 379, 113.CrossRefGoogle Scholar
Trembley, P. & Gasgnier, M. (1989). J. Microsc. Spectros. Electron. 14, 75.Google Scholar
Vallino, M. et al. (1989). Mater. Chem. Phys. 22, 523.CrossRefGoogle Scholar
Wong-Ng, W. et al. (1988). JCPDS Grant-in-Aid Report.Google Scholar
Wong-Ng, W. et al. (1987). JCPDS Grant-in-Aid Report.Google Scholar