Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T17:03:30.409Z Has data issue: false hasContentIssue false

Reinvestigation of crystal structure and structural disorder of Ba3MgSi2O8

Published online by Cambridge University Press:  29 February 2012

Tomoyuki Iwata
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Tatsuya Horie
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Koichiro Fukuda*
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystal structure and structural disorder of Ba3MgSi2O8 were reinvestigated by laboratory X-ray powder diffraction. The title compound was found to be trigonal with space group P3m1, Z=1, and unit-cell dimensions a=0.561 453(4) nm, c=0.727 629(4) nm, and V=0.198 641(2) nm3. The initial structural model used for structure refinement was taken from that of glaserite (K3NaS2O8) and modified by a split-atom model. In the split-atom model, one of the two types of Ba sites and that of SiO4 tetrahedra were, respectively, positionally and orientationally disordered. The new crystal structure and structural disorder were refined by the Rietveld method. The maximum-entropy-method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The final reliability indices calculated from MPF were Rwp=6.52%, S=1.36, Rp=4.84%, RB=0.97%, and RF=0.52%. Details of the disorder structure of Ba3MgSi2O8 are shown in the three-dimensional and two-dimensional electron-density distribution maps determined by MPF.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitasalo, T., Hietikko, A., Hölsä, J., Lastusaari, M., Niittykoski, J., and Piispanen, T. (2007). “Crystal structure of the Ba3MgSi2O8:Mn2+,Eu2+ phosphor for white light emitting diodes,” Z. Kristallogr. Suppl. 26, 461466. 10.1524/zksu.2007.2007.suppl_26.461Google Scholar
Baur, W. H. (1971). “Prediction of bond length variations in silicon-oxygen bonds,” Am. Mineral. AMMIAY 56, 15731599.Google Scholar
Brindley, G. W. (1949). “Quantitative X-ray analysis of crystalline substances or phases in their mixtures,” Bull. Soc. Chim. Fr. BSCFAS , D5963.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. 10.1107/S002188986800508XCrossRefGoogle Scholar
Dong, C. (1999). “POWDERX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838. 10.1107/S0021889899003039Google Scholar
Gelato, L. M. and Parthé, E. (1987). “STRUCTURE TIDY: A computer program to standardize crystal structure data,” J. Appl. Crystallogr. JACGAR 20, 139143. 10.1107/S0021889887086965CrossRefGoogle Scholar
Izumi, F. and Ikeda, T. (2000). “A Rietveld-analysis program rietan-98 and its applications to zeolites,” Mater. Sci. Forum MSFOEP 321–324, 198203. 10.4028/www.scientific.net/MSF.321-324.198Google Scholar
Izumi, F., Kumazawa, S., Ikeda, T., Hu, W. -Z., Yamamoto, A., and Oikawa, K. (2001). “MEM-based structure-refinement system REMEDY and its applications,” Mater. Sci. Forum MSFOEP 378–381, 5964. 10.4028/www.scientific.net/MSF.378-381.59Google Scholar
Kim, J. S., Kwon, A. K., Park, Y. H., Choi, J. C., Park, H. L., and Kim, G. C. (2007). “Luminescent and thermal properties of full-color emitting X 3MgSi2O8:Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. JLUMA8 122–123, 583586. 10.1016/j.jlumin.2006.01.231CrossRefGoogle Scholar
Kim, J. S., Lim, K. T., Jeong, Y. S., Jeon, P. E., Choi, J. C., and Park, H. L. (2005). “Full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphors for white-light-emitting diodes,” Solid State Commun. SSCOA4 135, 2124. 10.1016/j.ssc.2005.03.068CrossRefGoogle Scholar
Liu, B. and Barbier, J. (1993). “Structures of the stuffed tridymite derivatives, BaMSiO4 (M=Co, Zn, Mg),” J. Solid State Chem. JSSCBI 102, 115125. 10.1006/jssc.1993.1013CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008). “VESTA: A three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. JACGAR 41, 653658. 10.1107/S0021889808012016Google Scholar
Okada, K. and Ossaka, J. (1980). “Structures of potassium sodium sulfate and tripotassium sodium disulfate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 36, 919921. 10.1107/S0567740880004852CrossRefGoogle Scholar
Parthé, E. and Gelato, L. M. (1984). “The standardization of inorganic crystal-structure data,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 40, 169183. 10.1107/S0108767384000416CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. ABCRE6 22, 151152. 10.1107/S0365110X67000234CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr 32, 751767. 10.1107/S0567739476001551 CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. 10.1107/S002188987901178XCrossRefGoogle Scholar
Takata, M., Nishibori, E., and Sakata, M. (2001). “Charge density studies utilizing powder diffraction and MEM: Exploring of high T c superconductors, C60 superconductors and manganites,” Z. Kristallogr. ZEKRDZ 216, 7186. 10.1524/zkri.216.2.71.20335Google Scholar
Toraya, H. (1990). “Array-type universal profile function for powder pattern fitting,” J. Appl. Crystallogr. JACGAR 23, 485491. 10.1107/S002188989000704XCrossRefGoogle Scholar
Umetsu, Y., Okamoto, S., and Yamamoto, H. (2008). “Photoluminescence properties of Ba3MgSi2O8:Eu2+ blue phosphor and Ba3MgSi2O8:Eu2+,Mn2+ blue-red phosphor under near-ultraviolet-light excitation,” J. Electrochem. Soc. JESOAN 155, J193J197. 10.1149/1.2908877CrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR: A semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. 10.1107/S0021889885010512Google Scholar
Young, R. A. (1993). “Introduction to the Rietveld method” in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford), pp. 138.Google Scholar