Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T19:36:16.840Z Has data issue: false hasContentIssue false

Reference X-ray powder diffraction pattern of a high-pressure phase, CaCo2O4

Published online by Cambridge University Press:  29 February 2012

W. Wong-Ng*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Poly Crystallography Inc., Naperville, Illinois 60540-5407
M. Isobe
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Isukuba 305-0044, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

This paper reports a reference X-ray powder diffraction pattern for a high-pressure phase, CaCo2O4, which has been reported recently to have a large Seebeck coefficient. The structure of CaCo2O4 is orthorhombic with space group Pnma, a=8.789(2) Å, b=2.9006(7) Å, c=10.282(3) Å, V=262.43 Å3, and Dc=5.62 g/cm3. This phase crystallizes in the CaFe2O4-type structure and consists of an edge- and corner-shared CoO6 octahedral network. The reference pattern has been submitted to the Powder Diffraction File (PDF).

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P. (2007). “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices,” Adv. Mater.ADVMEW 19, 10431053.10.1002/adma.200600527CrossRefGoogle Scholar
Funahashi, R., Urata, S., and Kitawaki, M. (2004). “Exploration of n-type oxides by high throughput screening,” Appl. Surf. Sci.ASUSEE 223, 4448.10.1016/S0169-4332(03)00899-7CrossRefGoogle Scholar
Ghamaty, S. and Eisner, N. B. (1999). “Development of quantum well thermoelectric films,” Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, Maryland, pp. 485488.Google Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr.JACGAR 37, 823831.10.1107/S0021889804018096CrossRefGoogle Scholar
He, T., Chen, J. Z., Calvarese, T. G., and Subramanian, M. A. (2006). “Thermoelectric properties of La1−xAxCoO3 (A=Pb, Na),” Solid State Sci.SSSCFJ 8, 467469.10.1016/j.solidstatesciences.2006.01.002CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit,” ScienceSCIEAS 303, 818821.10.1126/science.1092963CrossRefGoogle ScholarPubMed
Larson, A. C. and von Dreele, R. B. (1992). “GSAS-General Structure Analysis system,” U.S. Government contract (W-7405-ENG-36) by the Los Alamos National laboratory, which is operated by the University of California for the U.S. Department of Energy.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9,” Phys. Rev. BPRBMDO 62, 166175.10.1103/PhysRevB.62.166CrossRefGoogle Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem.JSSCBI 178, 16701674.10.1016/j.jssc.2005.03.004CrossRefGoogle Scholar
Mikami, M., Funashashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6,” J. Appl. Phys.JAPIAU 94, 65796582.10.1063/1.1622115CrossRefGoogle Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci.ASUSEE 197–198, 442447.10.1016/S0169-4332(02)00359-8CrossRefGoogle Scholar
ICDD (2008). “Powder Diffraction File,” International Centre for Diffraction Data edited by Kabekkodu, S., Newtown Square, PA 19073-3272.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Shizuya, M., Isobe, M., and Takayama-Muromachi, E. (2007). “Structure and properties of the CaFe2O4-type cobalt oxide CaCo2O4,” J. Solid State Chem.JSSCBI 180, 25502557.10.1016/j.jssc.2007.07.008CrossRefGoogle Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. BPRBMDO 56, R12685–12687.10.1103/PhysRevB.56.R12685CrossRefGoogle Scholar
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” ScienceSCIEAS 272, 12761277.10.1126/science.272.5266.1276CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B. (2001). “Growth of one-dimensional Si/SiGe heterostructures by thermal CVD,” Nature (London)NATUAS 413, 597602.10.1038/35098012CrossRefGoogle Scholar