Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T05:35:41.708Z Has data issue: false hasContentIssue false

Quantitative X-ray diffraction phase analysis of airborne particulate collected by a cascade impactor sampler using the Rietveld full-pattern fitting method

Published online by Cambridge University Press:  10 January 2013

Vicente Esteve*
Affiliation:
Dpto. de Química Inorgánica y Orgánica. Universitat Jaume I. Ap. 224. 12080 Castellón. Spain
Juan Carda
Affiliation:
Dpto. de Química Inorgánica y Orgánica. Universitat Jaume I. Ap. 224. 12080 Castellón. Spain
María Mercedes Reventós
Affiliation:
Dpto. de Geología. Universitat de València. Burjassot (Valencia). Spain
José María Amigó
Affiliation:
Dpto. de Geología. Universitat de València. Burjassot (Valencia). Spain
*
a)To whom correspondence should be addressed, e-mail: [email protected]

Abstract

Samples of airborne particulate were collected at the “El Ingenio” site in Castellón (Spain) using a cascade impactor sampler. Quantitative analysis of present phases in the aerosol was performed using the full-pattern fitting Rietveld method. Quantitative information was obtained from refined individual scale factors and unit-cell volumes, obtained with a Rietveld refinement program. Quartz, calcite, and gypsum were encountered as major phases, and their size distribution and concentration in the atmosphere were calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bish, D. L., and Chipera, S. J. (1988). “Problems and solutions in quantitative analysis of complex mixtures by x-ray powder diffraction,” in Advances in X-ray Ambient Analysis (Plenum, New York).CrossRefGoogle Scholar
Bish, D. L., and Howard, S. A. (1986). “Quantitative analysis via the Rietveld method. Workshop on Quantitative X-ray Diffraction Analysis,” National Bureau of Standards, June 23–24.Google Scholar
Bish, D. L., and Howard, S. A. (1988). “Quantitative phase analysis using the Rietveld method,” J. Appl. Crystallogr. 21, 8691.CrossRefGoogle Scholar
Bish, D. L., and Post, J. E. (1993). “Quantitative mineralogical analysis using the Rietveld full-pattern fitting method,” Am. Mineral. 78, 932940.Google Scholar
Bowes, D. R., Langer, A. M., and Rohl, A. N. (1977). Philos. Trans. R. Soc. London, Ser. A 286, 593596.Google Scholar
Chung, F. H. (1974a). “Quantitative interpretation of x-ray diffraction patterns of mixtures I. Matrix-flushing method for quantitative multicomponent analysis,” J. Appl. Crystallogr. 7, 519525.CrossRefGoogle Scholar
Chung, F. H. (1974b). “Quantitative interpretation of x-ray diffraction patterns of mixtures II. Adiabatic principle of x-ray diffraction analysis of mixtures,” J. Appl. Crystallogr. 7, 526531.CrossRefGoogle Scholar
Chung, F. H. (1975). “Quantitative interpretation of x-ray diffraction patterns of mixtures III. Simultaneous determination of a set of reference intensities,” J. Appl. Crystallogr. 8, 1719.CrossRefGoogle Scholar
Clarke, G., and Karani, G. N. (1992). “Characterization of the carbonate content of atmospheric aerosols,” J. Atmos. Chem. 14, 119–128.CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Esteve, V. (1995). “Metodología y tecnicas analíticas para el estudio y caracterización del particulado mineral del aerosol atmosférico de Castellón.” Ph. D. Thesis. (Universitat de València, Valencia).Google Scholar
Glavas, S. (1988). “A wet-only precipitation study in a Mediterranean site, Patras, Greece,” Atmos. Environ. 22, 15051511.CrossRefGoogle Scholar
Hill, R. J., and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467474.CrossRefGoogle Scholar
Jarvinen, M. (1992). “About analytical models for texture correction,” Proceedings of Accuracy in Powder Diffraction, 2, 34.Google Scholar
Kao, A. S., and Friedlander, S. K. (1994). “Chemical signatures of the Los Angeles aerosol (d p<3.5 mm),Aerosol. Sci. Technol. 21, 283293.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. (Wiley, New York).Google Scholar
Loye-Pilot, M. D., Morelli, J., Martin, J. M., Gras, J. M. and Strauss, B. (1986). “Impact of Saharan Dust on the rain acidity in the Mediterranean atmosphere,” Proceedings of the 4th European Symposium Physico-Chemical Behavior of Atmospheric Pollutants, 489–496.Google Scholar
O’Connor, B. H., and Raven, M. D. (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures,” Powder Diffr. 2, 26.CrossRefGoogle Scholar
Post, J. E. and Bish, D. L. (1989). “Rietveld refinement of crystal structures using powder x-ray diffraction data,” in Modern Powder Diffractiometry, edited by D. L. Bish and J. E. Post (Mineralogical Society of America, Washington, DC.), Reviews in Mineralogy, Vol. 20.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Snyder, R. L. and Bish, D. L. (1989). “Quantitative analysis,” in Modern Powder Diffractiometry, edited by D. L. Bish and J. E. Post (Mineralogical Society of America, Washington, DC), Reviews in Mineralogy, Vol. 20.Google Scholar
Wiles, D. B.Young, R. A. (1981). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Crystallogr. 14, 149151.CrossRefGoogle Scholar