Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T18:54:58.002Z Has data issue: false hasContentIssue false

Quantitative Analysis of Sedimentary Minerals by Powder X-ray Diffraction

Published online by Cambridge University Press:  10 January 2013

Peter Bayliss
Affiliation:
Department of Geology and Geophysics University of Calgary, Alberta, Canada T2N 1N4

Abstract

The variables of reflection overlap, crystallinity and crystallite size, primary extinction, microabsorption, chemical substitutions, preferred orientation, and analytical procedures affect quantitative analysis by powder X-ray diffraction. The intensity of the strongest reflection (I) of 39 minerals from a typical sedimentary environment divided by the intensity of the strongest reflection (Ic) of corundum, I/Ic, may be used to determine mineral percentages. Because of the numerous variables mentioned above, the I/Ic ratios used should be taken from multi-mineral specimens that occur either in the same geological formation for quantitative analysis (±7%) or in a similar geological formation for quantitative analysis (±30%).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardossy, G., Bottyan, L., Gado, P., Griger, A. & Sasvari, J. (1980). Amer. Mineral. 65, 135141.Google Scholar
Bayliss, P. (1976). Amer, Mineral. 61, 334336.Google Scholar
Bayliss, P., Levinson, A. A. & Klovan, J. E. (1970). Bull. Canad. Petroleum Geology 18, 469473.Google Scholar
Bayliss, P. & Loughnan, F. C. (1964). Clay Mineral. Bull. 5, 353362.CrossRefGoogle Scholar
Brime, C. (1985). Mineral. Mag. 49, 531538.CrossRefGoogle Scholar
Brindley, G. W. (1980). Crystal Structures of Clay Minerals and Their X-ray Identification 411433. Mineralogical Society, London.CrossRefGoogle Scholar
Calvert, L. D., Sirianni, A. F., Gainsford, G. J. & Hubbard, C. R. (1983). Advances X-ray Analysis 26, 105110.Google Scholar
Chung, F. H. (1974 a). J. Appl. Cryst. 7, 519525.CrossRefGoogle Scholar
Chung, F. H. (1974 b). J. Appl. Cryst. 7, 526531.CrossRefGoogle Scholar
Chung, F. H. (1975). J. Appl. Cryst. 8, 1719.CrossRefGoogle Scholar
Cline, J. P. & Snyder, R. L. (1983). Advances X-ray Analysis, 26, 111117.Google Scholar
Davis, B. L. (1984). Advances X-ray Analysis, 27, 339347.Google Scholar
Klages, M. G. & Hopper, R. W. (1982). Soil Sci. Amer. J. 46, 415419.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Wiley & Sons, New York.Google Scholar
Petruk, W. (1964). Amer. Mineral. 49, 6171.Google Scholar
Pawloski, G. A. (1985). Amer. Mineral. 70, 663667.Google Scholar
Syvitski, J. P. M. & Bayliss, P. (1980). J. Sedimentary Petrology 50, 624626.Google Scholar