Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:43:19.371Z Has data issue: false hasContentIssue false

A Practical Method for the Determination of the Instrumental Full Width at Half Maximum

Published online by Cambridge University Press:  10 January 2013

D.M.A. Guérin
Affiliation:
Centro de Investigatión y Desarrollo en Procesos Cataliticos (CINDECA), Calle 47 N° 257 — (1900) La Plata —, Argentina
R.D. Bonetto
Affiliation:
Centro de Investigatión y Desarrollo en Procesos Cataliticos (CINDECA), Calle 47 N° 257 — (1900) La Plata —, Argentina
A.G. Alvarez
Affiliation:
Centro de Investigatión y Desarrollo en Procesos Cataliticos (CINDECA), Calle 47 N° 257 — (1900) La Plata —, Argentina

Extract

X-ray diffraction and neutron spectra present a peak assembly whose maxima are centered at angles corresponding to Bragg's law.

Analysis of diffracted intensity profiles in each peak can be used to estimate such morphologic characteristics of the samples as preferred orientation (Brindley and Kurtosy, 1961; Martin, 1966); crystallite sizes (Scherrer, 1919; Warren and Averbach, 1950; Wilson, 1962; and Guérin et al., 1986); and crystal shapes (Wilson, 1949). Such analysis can also be used to estimate the determination of residual stress and lattice defects (Warren and Averbach, 1950; Wilson, 1963). In such studies, a detailed analysis of the diffraction distribution is required and consequently adjustment of intensity values must be carried out, as they are affected by systematic errors in the measuring apparatus (for detailed description, see Klug and Alexander, 1974 and Wilson 1967).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W. & Kurtosy, S. S. (1961). Am. Mineral. 46, 1205.Google Scholar
Cagliotti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223.CrossRefGoogle Scholar
Guérin, D. M. A., Alvarez, A. G., Rebollo Neira, L. E., Plastino, A., & Bonetto, R. D. (1986). Acta Crystallogr. 42, 3035.CrossRefGoogle Scholar
Klug, H. P. & Alexander, L. E. (1974). X-Ray Diffraction Procedures for Polyctystalline and Amorphous Materials, 2nd ed. 291. New York: J. Wiley & Sons.Google Scholar
Martin, T. R. (1966). Clays, Clay Miner., Proc. 14th Natl. Conf., 271. New York: Pergamon.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Scherrer, P. (1918). Nachr. Ges. Wiss. Goettingen, Math.-Phys. K1, 2, 98.Google Scholar
Stout, G. H. & Jensen, L. H. (1965). X-Ray Structure Determination. London: Collier-Macmillan Limited.Google Scholar
Warren, B. E. & Averbach, B. L. (1950). J. Appl. Phys. 21, 595599.CrossRefGoogle Scholar
Wilson, A. J. C. (1949). X-Ray Optics. London: Methuen.Google Scholar
Wilson, A. J. C. (1962). Proc. Phys. Soc., London 80, 286294.CrossRefGoogle Scholar
Wilson, A. J. C. (1963). Proc. Phys. Soc., London 81, 4146.CrossRefGoogle Scholar
Wilson, A. J. C. (1967). Acta Crystallogr. 23, 288298.Google Scholar