Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T17:57:35.976Z Has data issue: false hasContentIssue false

Powder diffraction data for the three-layer Aurivillius ceramics Bi2Sr2−xAxNb2TiO12(A=Ca,Ba,x=0,0.5,1)

Published online by Cambridge University Press:  01 March 2012

M. S. Haluska*
Affiliation:
New York State College of Ceramics at Alfred University, 2 Pine Street, Alfred, New York 14802
S. A. Speakman
Affiliation:
New York State College of Ceramics at Alfred University, 2 Pine Street, Alfred, New York 14802
S. T. Misture*
Affiliation:
New York State College of Ceramics at Alfred University, 2 Pine Street, Alfred, New York 14802
*
a)Electronic mail: [email protected]
b)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Powder diffraction data for five three-layer Aurivillius ceramics of the form Bi2Sr2−xAxNb2TiO12 (A=Ca,Ba,x=0,0.5,1) have been determined from specimens that were characterized using both X-ray and neutron diffraction. Full Rietveld analysis demonstrated that the crystals were all tetragonal (space group I4∕mmm, #139), with highly aniostropic layered structures with lattice parameters on the order of a=3.9 Å and c=33 Å, and densities on the order of 7 g∕cm3

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, S. M., Falconer, M. J., McCreedy, M., and Lightfoot, P. (1997). J. Mater. Chem. JMACEP 7, 16091613.CrossRefGoogle Scholar
Durán-Martín, P., Castro, A., Millán, P., and Jiménez, B. (1998). J. Mater. Res. JMREEE 13, 2565.CrossRefGoogle Scholar
Haluska, M. S. (2003). Thesis, Alfred.Google Scholar
Haluska, M. S. and Misture, S. T. (2003). Materials Research Society Fall Meeting, edited by Greenblatt, M., Alario-Franco, M. A., Whittingham, M. S., and Rohrer, G. (Materials Research Society, Boston), pp. 103108.Google Scholar
Haluska, M. S. and Misture, S. T. (2004). J. Solid State Chem. JSSCBI 177, 19651975.CrossRefGoogle Scholar
Hervoches, C. H. and Lightfoot, P. (2000). J. Solid State Chem. JSSCBI 10.1006/jssc.2000.8741 153, 66.CrossRefGoogle Scholar
Hubbard, C. R., Lederman, S. M., and Pyrros, N. P. (1982). JCPDS-NBS*LSQ82.Google Scholar
Kendall, K. R., Navas, C., Thomas, J. K., and zur Loye, H.-C. (1996). Chem. Mater. CMATEX 8, 642649.CrossRefGoogle Scholar
Materials Data, Inc., Jade+. (2002). Version v. 6 0.3.Google Scholar
Misture, S. T., Chatfield, L. R., and Snyder, R. L. (1994). Powder Diffr. PODIE2 9, 172179.CrossRefGoogle Scholar
Peterson, M. S., Say, C. A., Speakman, S. A., and Misture, S. T. (2003). Adv. X-Ray Anal. AXRAAA 46, 226-231.Google Scholar
Say, C. A. (2002). M.S. thesis, New York State College of Ceramics at Alfred University.Google Scholar
Shulman, H. S., Testorf, M., Damjanovic, D., and Setter, N. (1996). J. Am. Ceram. Soc. JACTAW 79, 31243128.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. JACGAR 12, 6065.CrossRefGoogle Scholar
Snedden, A., Blake, S. M., and Lightfoot, P. (2003). Solid State Ionics SSIOD3 10.1016/S0167-2738(02)00690-2 156, 439.CrossRefGoogle Scholar
Speakman, S. A. (1999). Master of Science thesis, Alfred University.Google Scholar
Subbarao, E. C. (1961). Phys. Rev. PHRVAO 122, 804807.CrossRefGoogle Scholar
Thomas, J. K., Kendall, K. R., and zur Loye, H.-C. (1994). Solid State Ionics SSIOD3 70–71, 225.CrossRefGoogle Scholar
Yasuda, N., Miyayama, M., and Kudo, T. (2000). Solid State Ionics SSIOD3 133, 273278.CrossRefGoogle Scholar