Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:52:44.207Z Has data issue: false hasContentIssue false

Powder diffraction data for borides Pd3B and Pd5B2 and the formation of an amorphous boride Pd2B

Published online by Cambridge University Press:  05 March 2012

M. Beck
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany
M. Ellner*
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany
E. J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany
*
a)Electronic mail: [email protected]

Abstract

Powder diffraction data and refined unit cell parameters of two palladium borides were determined. For Pd3B (space group Pnma; Fe3C type) it was found that a=0.54602(3) nm, b=0.75596(4) nm, c=0.48417(4) nm and for Pd5B2 (space group C2/c; Mn5C2 type) a=1.27759(12) nm, b=0.49497(5) nm, c=0.54704(4) nm, β=97.049(7)°. Further, it was shown that the position of the principal scattering peak of the amorphous Pd2B fulfils the Nagel–Tauc criterion about glass forming ability.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alqasmi, R. A., Brodowsky, H., and Schaller, H.-J. (1982). “Zur Konstitution von Palladium-Bor Legierungen,” Z. Metallkd. ZEMTAE 73, 331334. zem, ZEMTAE Google Scholar
Beck, M., Ellner, M., and Mittemeijer, E. J. (2000). “Unit cell parameters and densities of the solid solution Pd(B),” Mater. Sci. Forum MSFOEP 321–324, (pt. 2), 604609. msf, MSFOEP CrossRefGoogle Scholar
Cocco, G., Schiffini, L., Sampoli, M., Lucci, A., and Riontino, G. (1983). “Compositional effects in Pd-B glassy alloys from X-Ray determined radial distribution functions,” Phys. Status Solidi A PSSABA 76, 753762. psa, PSSABA CrossRefGoogle Scholar
deWolff, P. M. (1968). “A simplified criterion for reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Hyde, B. G., and Andersson, S. (1989). Inorganic Crystal Structures (Wiley, New York), pp. 121–122.Google Scholar
Ipser, H., and Rogl, P. (1981). “Constitution diagrams of the binary Pd-B and Ir-B,” J. Less-Common Met. JCOMAH 82, 363. jco, JCOMAH CrossRefGoogle Scholar
Kripyakevich, P. I. (1977). Strukturnyje tipy intermetallicheskikh sojedinenij (Izdatelstvo Nauka, Moscow), p. 155.Google Scholar
Larson, A. C., and Von Dreele, R. B. (1985). “GSAS: General Structure Analysis System,” Los Alamos National Labratory, Los Alamos.Google Scholar
Mizutani, U. (1983). “Electronic structure of metallic glasses,” Prog. Mater. Sci. PRMSAQ 28, 110. prm, PRMSAQ CrossRefGoogle Scholar
Nagel, S. R., and Tauc, J. (1975). “Nearly-free-electron approach to the theory of metallic glass alloys,” Phys. Rev. Lett. PRLTAO 35, 380383. prl, PRLTAO CrossRefGoogle Scholar
Parthé, E., Gelato, L., Chabot, B., Penzo, M, Cenzual, K., and Gladyshevskii, R. (1994). TYPIX, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer-Verlag, Berlin), Vol. 3, p. 1056.Google Scholar
Powder Diffraction File, Sets 1-50 plus 70-88 (2000). (International Centre for Diffraction Data, Newton Square, PA, USA).Google Scholar
Predel, B. (1989). “Metallic glasses,” in Thermochemistry of alloys, edited by H. Brodowsky and H.-J. Schaller, NATO ASI Series C 286 (Kluwer Academic, Dordrecht), p. 462.Google Scholar
Predel, B., and Duddek, G. (1978). “über ein neues Verfahren zur Erzeugung metastabiler Festkörper durch extrem rasche Abkühlung flüssiger Legierungen,” Z. Metallkd. ZEMTAE 69, 773776. zem, ZEMTAE Google Scholar
Rogl, P. (1998). In Phase Diagrams of Ternary Metal-Boron-Carbon Systems, edited by G. Effenberg (ASM International, Materials Park, OH), p. 239.Google Scholar
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen (Springer Verlag, Berlin), p. 252.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Stenberg, E. (1961). “The Crystal Structures of Pd5B2 (Mn5C2) and Pd3B,Acta Chem. Scand. (1947-1973) ACSAA4 15, 861870. 9em, ACSAA4 CrossRefGoogle Scholar
Tergenius, L. E., and Lundström, T. (1980). “The crystal structure of Pd2B,J. Solid State Chem. JSSCBI 31, 361367. jss, JSSCBI CrossRefGoogle Scholar
Villars, P. (1997). Pearson’s Handbook Desk Edition (ASM International, Materials Park, OH), Vol. 1, p. 54.Google Scholar
Villars, P., and Calvert, L. D. (1991). Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH), Vol. 1, pp. 176–177.Google Scholar
Yvon, K., Jeitschko, W., and Parthé, E. (1977). “LAZY PULVERIX a computer program, for calculating X-ray and neutron diffraction powder patterns,” J. Appl. Crystallogr. JACGAR 20, 7374. acr, JACGAR CrossRefGoogle Scholar