Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:24:57.019Z Has data issue: false hasContentIssue false

Powder diffraction data and Rietveid refinement of the compound Ba2Cl2Cu3O4

Published online by Cambridge University Press:  10 January 2013

W. Pitschke
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden e.V., Postfach 27 00 16, D-01171 Dresden, Germany
G. Krabbes
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden e.V., Postfach 27 00 16, D-01171 Dresden, Germany
N. Mattern
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden e.V., Postfach 27 00 16, D-01171 Dresden, Germany

Abstract

Indexed X-ray powder diffraction data are reported for the semiconducting compound Ba2Cl2Cu3O4. The structure was refined by the Rietveid technique on the basis of the space group I4/mmm. Refined unit cell dimensions are a = 5.5156(1) Å, c = 13.8221(3) Å, V = 420.49 Å3Dx = 4.74 g/cm3, F30 = 129(0.0075,30), M20 = 121, Rp = 6.58, Rwp = 8.66, and RB = 4.49.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, C., Bekeris, V., Urba, L., Polla, G., Levy, P., Leyva, G., de Benyacar, M.A.R., and de la Cruz, F. (1994). “Chlorination effects in electrical transport properties of ceramic,” Physica C 227, 237244.CrossRefGoogle Scholar
Caglioti, G., Paoletti, A. M. and Ricci, F.P., (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3 223228.CrossRefGoogle Scholar
Dollase, W.A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” Acta Crystallogr. 19, 267272.Google Scholar
Gai, P.L., and Thomas, J.M. (1992). “Nanostructure and chemistry of high temperature superconductor ceramics,” Supercond. Rev. 1 147.Google Scholar
Grande, B., and Müller-Buschbaum, Hk. (1975). “Zur Kenntnis von Sr2CuO2Cl2,” Z. Anorg. Allg. Chem. 417, 6874.Google Scholar
Hahn, T. (Ed.) (1989). International Tables for Crystallography, Vol A: Space Group Symmetry (Kluwer, Dordrecht), Vol. A.Google Scholar
Hermann, H., and Ermrich, M. (1987). “Microabsorption correction of X-ray intensities in randomly packed powder specimens,” Acta Crystallogr. A 43, 189195.CrossRefGoogle Scholar
Huang, J., Hoffman, R.-D., and Sleight, A.W. (1990). “New layered copper oxides containing double CuO2 sheets: Ca3Cu2O4Cl2 and Ca3Cu204Br2,” Mat. Res. Bull. 25, 10581090.CrossRefGoogle Scholar
Kipka, R., and Müller-Buschbaum, Hk. (1976). “Zur Kenntnis von Ba2Cu3O4Cl2,” Z. Anorg. Allg. Chem. 419, 5862.Google Scholar
Kraus, W., and Nolze, G. (1995). “Powder Cell—Ein Programm zur Simulation von Röntgendiffraktogrammen,” Z. Kristallogr. Suppl. Issue No. 9, 107.Google Scholar
March, A. (1932). “Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation,” Z. Kristallogr. 81, 285297.CrossRefGoogle Scholar
Müller-Buschbaum, Hk. (1989). “Zur Kristallchemie der oxidischen Hochtemperatursupraleiter und deren kristallchemischen Verwandten,” Angew. Chem. 101, 15031524.CrossRefGoogle Scholar
Osipyan, Y. A., Zharikov, O. V., Sidorov, N. S., Kulakov, V. I., Mogilyanskij, D. N., Nikolaev, R. K., Shektman, V. Sh., Volegova, O. A., and Romenko, I. M. (1988). “Observation of superconductivity in YBa2Cu3O6Clx,” Pisma Zh. Eksp. Teor. Fiz. 48, 225227.Google Scholar
Osquiguil, E., Civale, L., Decca, R., and de la Cruz, F. (1988). “Metallic to variable-range-hopping transition controled by oxygen content in La-Sr-Cu-O,” Phys. Rev. B 38, 28402842.Google Scholar
Ovshinsky, S. R., Young, R. T., Allred, D. D., de Maggio, G., and van der Leeden, G.A. (1987). “Superconductivity at 155 K,” Phys. Rev. Lett. 58, 25792589.CrossRefGoogle ScholarPubMed
Peña, O., Mokhtari, M., Perrin, C., Thivet, C., Guilloux-Viry, M., Perrin, A., and Sergent, M. (1993). “Tc enhancement and superconducting properties of YBa2Cu30–6.5 thin film after fluorine insertion,” Physica C 206, 610.CrossRefGoogle Scholar
Perrin, C., Peña, O., and Sergent, M. (1990). “Chlorination of YBa2Cu3Ox compounds by solid gas reaction,” High Temperature Superconductors—Materials Aspects, ICMC '90 Topical conference Garmisch Partenkirchen, DGM Informationsgesellschaft Oberursel.Google Scholar
Pitschke, W., Mattern, N., and Hermann, H. (1993). “Incorporation of microabsorption corrections into Rietveld analysis,” Powder Diffraction 8, 223228.CrossRefGoogle Scholar
Powder Diffraction File, JCPDS-International Centre for Diffraction Data, Newton Square Corporate Campus, 12 Campus Boulevard, Newton Square, PA 19073-3273.Google Scholar
Qian, Y., (1990). Univ. of Sci. and Tech. of China, Hefei, Anhui, Peoples Republic of China, Private Communication (given in Powder Diffraction File, Card number 42-0056).Google Scholar
Rietveld, H.M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Smith, G.S., and Snyder, R.L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Wiles, D.B., and Young, R.A. (1981). “New computer program for Rietveld analysis of powder diffraction patterns,” J. Appl. Crystallogr. 15, 440444.Google Scholar
Wolff de, P.M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Wu, M.K. (1993). “Some recent developments in high-temperature superconducting oxides: A work review,” Mater. Chem. Phys. 34, 185200.CrossRefGoogle Scholar
Young, R.A., and Wiles, D.B. (1982). “Profile shape functions in Rietveld analysis,” J. Appl. Crystallogr. 15 430438.CrossRefGoogle Scholar