Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:49:37.284Z Has data issue: false hasContentIssue false

Phase evolution studies of mechanochemical-prepared Cu2ZnSnS4 powder via comprehensive annealing and milling investigation

Published online by Cambridge University Press:  19 January 2022

Soheil Alee
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran Solar Cells Research Group, Shahid Beheshti University, Tehran, Iran
Morteza Asemi
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran Solar Cells Research Group, Shahid Beheshti University, Tehran, Iran
Mina Soltanmohammadi
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran Solar Cells Research Group, Shahid Beheshti University, Tehran, Iran
Majid Ghanaatshoar*
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran Solar Cells Research Group, Shahid Beheshti University, Tehran, Iran
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Environmental benign and stable kesterite Cu2ZnSnS4 (CZTS) photovoltaics provides an intriguing alternative to conventional solar cells. However, further development is required for boosting the Voc-deficit in CZTS photovoltaic to enhance the cell function. Intending to obtain high-quality CZTS powder as the basis, here we report a comprehensive study of the vacuum annealing process (including annealing temperature, duration, and heating rates) for synthesized powder with the ball-milling method, which leads to a high-quality kesterite structure. According to analysis outcomes, there are not any significant differences in structures of differently milled specimens while the optical and morphological findings exhibit distinctive results. In short, the 10 h milled powder annealed at 500 °C for 5 h with a 9 °C min−1 heating rate possesses a high-quality structure alongside the desired 1.53 eV bandgap and optimum morphological characteristics.

Type
Technical Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, V., Jain, K., Pasricha, R., and Chand, S. (2013). “Green synthesis of nanocrystalline Cu2ZnSnS4 powder using hydrothermal route,” J. Nanopart, 2013(685836), 17.Google Scholar
Ahmad, R., Distaso, M., Azimi, H., Brabec, C. J., and Peukert, W. (2013). “Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles,” J. Nanopart. Res. 15(9), 116.CrossRefGoogle Scholar
Banerjee, G., Das, S., and Ghosh, S. (2019). “Optical properties of Cu2ZnSnS4 (CZTS) made by SILAR method,” Mater. Today: Proc. 18, 494500.Google Scholar
Bouzida, S., Battas, M., Benamar, E. B., Schmerber, G., Dinia, A., Abd-Lefdil, M., and Regragui, M. (2021). “Effect of volume of the solution and sulfurization on properties of Cu2ZnSnS4 thin films fabricated by spray assisted chemical vapour deposition method,” Mater. Res. Innovations, 17. doi:10.1080/14328917.2021.1904627.Google Scholar
Cazzaniga, A., Crovetto, A., Yan, C., Sun, K., Hao, X., Estelrich, J. R., Canulescu, S., Stamate, E., Pryds, N., Hansen, O., and Schou, J. (2017). “Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition,” Sol. Energy Mater. Sol. Cells 166, 9199.CrossRefGoogle Scholar
Chaki, S. H., Deshpande, M. P., and Tailor, J. P. (2014). “Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques,” Thin Solid Films 550, 291297.CrossRefGoogle Scholar
Chalapathi, U., Uthanna, S., and Raja, V. S. (2017). “Structural, microstructural and optical properties of Cu2ZnSnS4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing,” Bull. Mater. Sci. 40(5), 887895.CrossRefGoogle Scholar
Chen, S., Walsh, A., Gong, X. G., and Wei, S. H. (2013). “Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers,” Adv. Mater. 25(11), 15221539.CrossRefGoogle ScholarPubMed
Dhakal, T. P., Peng, C. Y., Tobias, R. R., Dasharathy, R., and Westgate, C. R. (2014). “Characterization of a CZTS thin film solar cell grown by sputtering method,” Sol. Energy 100, 2330.CrossRefGoogle Scholar
Gates-Rector, S. and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Gurieva, G., Guc, M., Bruk, L. L., Izquierdo‐Roca, V., Pérez Rodríguez, A., Schorr, S., and Arushanov, E. (2013). “Cu2ZnSnS4 thin films grown by spray pyrolysis: characterization by Raman spectroscopy and X-ray diffraction,” Phys. Status Solidi C 10(7–8), 10821085.CrossRefGoogle Scholar
Ito, K. (2014). Copper Zinc tin Sulfide-Based Thin Film Solar Cells (Wiley, New York), 1st ed., p. 64.Google Scholar
Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K. F., Kato, T., and Sugimoto, H. (2016). “New world record Cu (In, Ga) (Se, S)2 thin film solar cell efficiency beyond 22%,” in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 1287–1291.CrossRefGoogle Scholar
Kavlak, G., McNerney, J., Jaffe, R. L., and Trancik, J. E. (2015). “Metal production requirements for rapid photovoltaics deployment,” Energy Environ. Sci. 8(6), 16511659.CrossRefGoogle Scholar
Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S., and Qiao, Q. (2015). “Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells,” Energy Environ. Sci. 8(11), 31343159.CrossRefGoogle Scholar
Li, C., Yao, B., Li, Y,, Xiao, Z., Ding, Z., Zhao, H., Zhang, L., and Zhang, Z. (2015). “Fabrication, characterization and application of Cu2ZnSn (S, Se)4 absorber layer via a hybrid ink containing ball milled powders,” J. Alloys Compd. 643, 152158.CrossRefGoogle Scholar
Li, Z. S., Wang, S. R., Jiang, Z., Yang, M., Lu, Y. L., Liu, S. J., Zhao, Q. C., and Hao, R. T. (2016). “Cu2znsns4 solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors,” Phys. B 502, 5660.CrossRefGoogle Scholar
Lin, Y. P., Chi, Y. F., Hsieh, T. E., Chen, Y. C., and Huang, K. P. (2016). “Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells,” J. Alloys Compd. 654, 498508.CrossRefGoogle Scholar
Liu, C. Q., Wen, B., Wang, N., Liu, S. M., Wang, H. L., Jiang, W. W., Ding, W. Y., Xu, S. C., and Chai, W. P. (2017). “Phase evolution and sintering behaviors of Cu2ZnSnS4 powders synthesized by mechanochemical process with different milling parameters,” J. Alloys Compd. 708, 428436.CrossRefGoogle Scholar
Metzger, W. K., Repins, I. L., and Contreras, M. A. (2008). “Long lifetimes in high-efficiency Cu (In, Ga) Se2 solar cells,” Appl. Phys. Lett. 93(2), 022110.CrossRefGoogle Scholar
Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K., and Guha, S. (2011). “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 14211436.CrossRefGoogle Scholar
Morales-Acevedo, A. (2010). “A simple model of graded band-gap CuInGaSe2 solar cells,” Energy Procedia 2(1), 169176.CrossRefGoogle Scholar
Müller, M., Ricardo, C. A., Di Maggio, R., and Scardi, P. (2013). “Growth kinetics of Cu2ZnSnS4 thin films and powders,” Powd. Diffr. 28(S2), S228.CrossRefGoogle Scholar
Nozaki, H., Fukano, T., Ohta, S., Seno, Y., Katagiri, H., and Jimbo, K. (2012). “Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion,” J. Alloys Compd. 524, 2225.CrossRefGoogle Scholar
Powalla, M., Paetel, S., Ahlswede, E., Wuerz, R., Wessendorf, C. D., and Magorian Friedlmeier, T. (2018). “Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe, Cu (In, Ga) Se2, and perovskite-based materials,” Appl. Phys. Rev. 5(4), 041602.CrossRefGoogle Scholar
Shin, D., Saparov, B., and Mitzi, D. B. (2017). “Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials,” Adv. Energy Mater. 7(11), 1602366.CrossRefGoogle Scholar
Shockley, W. and Queisser, H. J. (1961). “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510519.CrossRefGoogle Scholar
Soltanmohammadi, M., Karimi, V., Alee, S., Abrari, M., Ahmadi, M., and Ghanaatshoar, M (2021). “Cu2ZnSnS4 thin film as a counter electrode in zinc stannate-based dye-sensitized solar cells,” Semicond. Sci. Technol. 36(10), 105008.CrossRefGoogle Scholar
Song, N., Green, M. A., Huang, J., Hu, Y., and Hao, X. (2018). “Study of sputtered Cu2ZnSnS4 thin films on Si,” Appl. Surf. Sci. 459, 700706.CrossRefGoogle Scholar
Tao, J., Liu, J., He, J., Zhang, K., Jiang, J., Sun, L., Yang, P., and Chu, J. (2014). “Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu–Zn–Sn–S precursor layers for solar cell applications,” RSC Adv. 4(46), 2397723984.CrossRefGoogle Scholar
Wang, Y. and Gong, H. (2011). “Cu2znsns4 synthesized through a Green and economic process,” J. Alloys Compd. 509(40), 96279630.CrossRefGoogle Scholar
Wang, W., Shen, H., He, X., and Li, J. (2014). “Effects of sulfur sources on properties of Cu2ZnSnS4 nanoparticles,” J. Nanopart. Res. 16(6), 18.Google Scholar
Wu, S. M., Xue, Y. Z., Zhou, L. M., Liu, X., and Xu, D. Y. (2014). “Structure and morphology evolution in mechanochemical processed CuInS2 powder,” J. Alloys Compd. 600, 96100.CrossRefGoogle Scholar
Xiong, C., Gao, M., and Gao, W. (2020). “Cu2ZnSnS4 (CZTS) thin films prepared by sol–gel spin-coating technique,” Int. J. Mod. Phys. B 34(01n03), 2040019.CrossRefGoogle Scholar
Yan, C., Liu, F., Song, N., Ng, B. K., Stride, J. A., Tadich, A., and Hao, X. (2014). “Band alignments of different buffer layers (CdS, Zn (O, S), and In2S3) on Cu2ZnSnS4,” Appl. Phys. Lett. 104(17), 173901.CrossRefGoogle Scholar
Zhou, Y., Xi, S., Sun, C., and Wu, H. (2016). “Facile synthesis of Cu2ZnSnS4 powders by mechanical alloying and annealing,” Mater. Lett. 169, 176179.CrossRefGoogle Scholar
Zhou, H., Cheng, S., Zhao, P., Yu, J., and Jia, H. (2017). “Characterisation and properties of Cu2ZnSnS4 thin films synthesised by sputtering from an alloy target,” Mater. Res. Innovations 21(2), 97101.CrossRefGoogle Scholar