Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:06:29.941Z Has data issue: false hasContentIssue false

On the crystal structures of some nickel hexacyanoferrates (II,III)

Published online by Cambridge University Press:  06 March 2012

R. Martínez-Garcia
Affiliation:
Institute of Materials and Reagents, University of Havana, San Lázaro and L, 10400 Havana, Cuba
E. Reguera*
Affiliation:
Institute of Materials and Reagents, University of Havana, San Lázaro and L, 10400 Havana, Cuba
J. Balmaseda
Affiliation:
Institute of Materials and Reagents, University of Havana, San Lázaro and L, 10400 Havana, Cuba
G. Ramos
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada IPN, Unidad Qro. Col. Alameda, 76040 Querétaro, México
H. Yee-Madeira
Affiliation:
Depto. Física de la Escuela Superior de Física y Matemáticas-IPN, Col. Lindavista, México DF, México
*
a)Author to whom all correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structures of some nickel hexacyanoferrates (II, III), including mixed compositions containing Na+, K+ and Cs+, were resolved and refined from XRD powder patterns. Data from infrared, Mössbauer and adsorption techniques provided complementary structural information. The crystal structures of Ni3[Fe(CN)6]2⋅16H2O and NiCs2[Fe(CN)6] were refined in space group Fm3m. NiNa2[Fe(CN)6]⋅2H2O and NiK2[Fe(CN)6]⋅2H2O were found to be orthorhombic (space group Pmn21). This structure (Pmn21) results from a distortion around the alkali ion, which appears as a monohydrated interstitial species. On ionic exchange in an aqueous solution containing Cs+, the orthorhombic distortion disappears and the cubic cell is obtained. Cs+ is a large cation and space is not available for interstitial water molecules. This orthorhombic model is also supported by the Mössbauer spectra of the ferrous analogs, FeK2[Fe(CN)6]⋅xH2O and Fe[Pt(CN)6]. © 2004 International Centre for Diffraction Data.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adekola, F., Fedoroff, M., Ayrault, S., Loss-Neskovic, C., Garnier, E., Fedoroff, M., and Yu, L. T. (1997). “Interaction of Silver ions in solutions with Copper hexacyanoferrates (II) Cu2IIFe(CN)6,J. Solid State Chem. JSSCBI 132, 399406. jss, JSSCBI Google Scholar
Ayrault, S., Jimenez, B., Garnier, E., Fedoroff, M., Jones, D. J., and Loss-Neskovic, C. (1998). “Sorption mechanisms of Cesium on Cu2IIFe(CN)6 and Cu3II[Fe(CN)6]2 hexacyanoferrates and their relation to the crystalline structure,” J. Solid State Chem. JSSCBI 141, 475485. jss, JSSCBI Google Scholar
Balmaseda, J., Reguera, E., Fernández, J., Gordillo, A., and Yee-Madeira, H. (2003). “Behavior of Prussian blue-based materials in presence of ammonia,” J. Phys. Chem. Solids JPCSAW 64 (4), 685693. jpx, JPCSAW Google Scholar
Balmaseda, J., Reguera, E., Gómez, A., Díaz, B., and Autie, M. (2002). “Evaluation of cadmium hexacyanoferrate (III) as a microporous material,” Microporous Mesoporous Mater. MIMMFJ 54, 285292. a9k, MIMMFJ CrossRefGoogle Scholar
Beall, G. W., Milligan, W. O., Korp, J., and Bernal, I. (1977). “Crystal Structure of Mn3[Co(CN)6]2⋅12H2O and Cd3[Co(CN)6]2⋅12H2O by Neutron and X-ray Diffraction,” Inorg. Chem. INOCAJ 16 (11), 27152718. ino, INOCAJ CrossRefGoogle Scholar
Boxhoorn, G., Moolhuysen, J., Coolegem, J. P. G., and van Santen, R. A. (1985). “Cyanometallates: an Underestimated Class of Molecular Sieves,” J. Chem. Soc., Chem. Commun. 1305–1307.Google Scholar
Cartraud, P., Cointot, A., and Renaud, A. (1981). “Zeolitic properties of mixed hexacyanoferrates(II): K2Zn3[Fe(CN)6]2⋅xH2O,J. Chem. Soc., Faraday Trans. 1 JCFTAR 1 (77), 15611567. jfy, JCFTAR Google Scholar
Entley, W. R.and Girolami, G. S. (1995). “High-Temperature Molecular Magnets Based on Cyanovanadate Building Blocks: Spontaneous Magnetization at 230 K,” Science SCIEAS 268, 397400. sci, SCIEAS Google Scholar
Ferlay, S., Mallah, T., Ouahes, R., Veillet, P., and Verdaguer, M. (1995). “A room-temperature organometallic magnet based on Prussian blue,” Nature (London) NATUAS 378, 701703. nat, NATUAS CrossRefGoogle Scholar
Fernandez, J.and Reguera, E. (1997). “Mechano-chemical reactions in KBr pressed disks,” Solid State Ionics SSIOD3 93, 139147. ssi, SSIOD3 Google Scholar
Gravereau, P.and Garnier, E. (1984). “Structure de la Phase Cubique de l’Hexacyanoferrate (III) de Zinc,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE C40, 13061309. acg, ACSCEE Google Scholar
Herren, F., Fischer, P., Ludi, A., and Halg, W. (1980). “Neutro Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3⋅xH2O. Location of Water Molecules and Long-Range Magnetic Order,” Inorg. Chem. INOCAJ 19, 956959. ino, INOCAJ CrossRefGoogle Scholar
Holmes, S. D.and Girolami, G. S. (1999). “Sol-Gel Synthesis of KVII[CrIII(CN)6] 2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C,J. Am. Chem. Soc. JACSAT 121, 55935594. acs, JACSAT Google Scholar
Kuyper, J.and Boxhoorn, G. (1987). “Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves,” J. Catal. JCTLA5 105, 163174. jtl, JCTLA5 CrossRefGoogle Scholar
Louer, D.and Vargas, R. (1982). “Indexation Automatique des Diagrammes de Poudre par Dichotomies Successives,” J. Appl. Crystallogr. JACGAR 15, 542545. acr, JACGAR CrossRefGoogle Scholar
Nakamoto, K. (1992). Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York).Google Scholar
Pecharsky, V. and Zavalij, P. (2003). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Klumer Academic, Dordrecht).Google Scholar
Ratusza, A., Juszczyk, S., and Malecki, G. (1995). “Crystal structure of the three-dimensional magnetic network of type Mek[Fe(CN)6]1⋅mH2O, where Me=Cu, Ni, Co,” Powder Diffr. PODIE2 10, 300305. pdj, PODIE2 Google Scholar
Reguera, E., Fernández, J., Diaz, C., and Molerio, J. (1992). “Behavior of Prussian Blue during its interaction with ozone,” Hyperfine Interact. HYINDN 73, 285294. hfi, HYINDN CrossRefGoogle Scholar
Reguera, E., Yee-Madeira, H., Fernández, J., and Nuñez, L. (1999). “Mössbauer spectra of ferrous salts of transition metal cyano complexes. A survey,” Transit. Met. Chem. ZZZZZZ 24, 163167.Google Scholar
Reguera, E., Balmaseda, J., Quintana, G., Gomez, A., and Fernandez, J. (1998). “Transformation of Cadmium Ferricyanide on Heating, Milling and Sonication,” Polyhedron PLYHDE 17, 23532361. ply, PLYHDE CrossRefGoogle Scholar
Retzlaff, C. (1987). “Nitroprusside ein-und zweiwetiger Kationen,” Ph.D. dissertation, University of Köln, Germany.Google Scholar
Roberts, L. (1987). “Radiation accident grips Goiana,” Science SCIEAS 238, 10281031. sci, SCIEAS Google Scholar
Rodriguez-Carbajal, J. (1998). FULLPROF 98, Institute Leon Brillouin, Saclay, France.Google Scholar
Sing, K. W., Everett, D. H., Houl, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemeniewska, T. (1985). “Reporting physisorption data for Gas/Solid system with special reference to the determination of surface area and porosity,” Pure Appl. Chem. PACHAS 57 (4), 603619. pac, PACHAS Google Scholar
Zhang, Y. (1982). “Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids,” Inorg. Chem. INOCAJ 21, 38893893. ino, INOCAJ CrossRefGoogle Scholar