Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T21:53:23.909Z Has data issue: false hasContentIssue false

On the crystal structures and hydrogen bond patterns in proline pseudopolymorphs

Published online by Cambridge University Press:  29 February 2012

Luis E. Seijas
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Gerzon E. Delgado*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Asiloé J. Mora*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Andrew N. Fitch
Affiliation:
European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex, France
Michela Brunelli
Affiliation:
Institut Laue Langevin, BP156, F-38042 Grenoble Cedex, France
*
a)Authors to whom correspondence should be addressed. Electronic addresses: [email protected] and [email protected]
a)Authors to whom correspondence should be addressed. Electronic addresses: [email protected] and [email protected]

Abstract

Amino acids often cocrystallize with water molecules, which make them pseudopolymorphs of their anhydrous forms. In this work, we discuss in detail the hydrogen bond patterns in anhydrous L-proline and DL-proline and its pseudopolymorphic forms: L-proline monohydrate and DL-proline monohydrate. For this propose, the crystal structure of L-proline anhydrous was determined from synchrotron X-ray powder diffraction data and refined using the Rietveld method. Special emphasis is given to the role played by the water molecule in the hydrogen bond network observed in the crystalline structures.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: A quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 58, 380388.10.1107/S0108768102003890CrossRefGoogle ScholarPubMed
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: Structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. JACGAR 42, 11971202.10.1107/S0021889809042915CrossRefGoogle Scholar
Bergerhoff, G., Berndt, M., and Brandenburg, K. (1996). “Evaluation of crystallographic data with the program DIAMOND,” J. Res. Natl. Inst. Stand. Technol. JRITEF 101, 221225.CrossRefGoogle ScholarPubMed
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. JACGAR 37, 724731.10.1107/S0021889804014876CrossRefGoogle Scholar
Burge, R. E., Harrison, P., and Mcgavin, S. (1962). “The structure of the poly-L-proline II,” Acta Crystallogr. ACSEBH 15, 914915.10.1107/S0365110X62002388CrossRefGoogle Scholar
Cremer, D. and Pople, J. A. (1975). “General definition of ring puckering coordinates,” J. Am. Chem. Soc. JACSAT 97, 13541358.10.1021/ja00839a011CrossRefGoogle Scholar
Dalhus, B. and Görbitz, C. H. (2004). “Crystal structures of hydrophobic amino acids: Interaction energies of hydrogen-bonded layers revealed by ab initio calculations,” J. Mol. Struct.: THEOCHEM THEODJ 675, 4752.10.1016/j.theochem.2003.12.032CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic-compounds,” Acc. Chem. Res. ACHRE4 23, 120126.10.1021/ar00172a005CrossRefGoogle Scholar
Finger, L. W., Cox, L. W., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900.10.1107/S0021889894004218CrossRefGoogle Scholar
Fitch, A. N. (2004). “The high resolution powder diffraction beam line at ESRF,” J. Res. Natl. Inst. Stand. Technol. JRITEF 109, 133142.CrossRefGoogle ScholarPubMed
Flaig, R., Koritsanszky, T., Dittrich, B., Wagner, A., and Luger, P. (2002). “Intra- and intermolecular topological properties of amino acids: A comparative study of experimental and theoretical results,” J. Am. Chem. Soc. JACSAT 124, 34073417.10.1021/ja011492yCrossRefGoogle ScholarPubMed
Janczak, J. and Luger, P. (1997). “L-proline monohydrate at 100 K,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 53, 19541956.10.1107/S0108270197011487CrossRefGoogle Scholar
Kayushina, R. L. and Vainshtein, B. K. (1965). “X-ray determination of the structure of L-proline,” Kristallografiya KRISAJ 10, 833844.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray-powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Myung, S., Pink, M., Baik, M.-H., and Clemmer, D. E. (2005). “DL-proline,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 61, 506508.10.1107/S0108270105021001CrossRefGoogle ScholarPubMed
Nangia, A. and Desiraju, G. R. (1999). “Pseudopolymorphism: Occurrences of hydrogen bonding organic solvents in molecular crystals,” Chem. Commun. (Cambridge) CHCOFS , 605606.10.1039/a809755kCrossRefGoogle Scholar
Padmanabhan, S., Suresh, S., and Vijayan, M. (1995). “DL-Proline monohydrated,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 51, 20982100.10.1107/S0108270195003465CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 64, 112122.10.1107/S0108767307043930CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Thompson, P., Cox, D., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 20, 7983.10.1107/S0021889887087090CrossRefGoogle Scholar
Voet, D. and Voet, J. (1995). Biochemistry, 2nd ed. (Wiley, New York).Google Scholar
Wallach, O. (1895). “Zur kenntniss der terpene und der ätherischen oele,” Justus Liebigs Ann. Chem. JLACBF 286, 90143.10.1002/jlac.18952860105CrossRefGoogle Scholar
Yin, Z. and Li, Z. (2006). “Conformational pseudo-polymorphs and hydrogen bonding of m-di-(pyrrole-2-carboxamide)-xylylene,” J. Mol. Struct. JMOSB4 794, 265269.10.1016/j.molstruc.2006.02.044CrossRefGoogle Scholar