Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T14:51:20.553Z Has data issue: false hasContentIssue false

Observation of multiple Bragg reflections accompanying forbidden Si(002) reflection in bent-perfect Si crystal

Published online by Cambridge University Press:  22 February 2021

P. Mikula*
Affiliation:
Nuclear Physics Institute of the Czech Academy of Sciences, Husinec – Řež 130, 250 68Řež, Czech Republic
M. Vrána
Affiliation:
Nuclear Physics Institute of the Czech Academy of Sciences, Husinec – Řež 130, 250 68Řež, Czech Republic
J. Šaroun
Affiliation:
Nuclear Physics Institute of the Czech Academy of Sciences, Husinec – Řež 130, 250 68Řež, Czech Republic
V. Ryukhtin
Affiliation:
Nuclear Physics Institute of the Czech Academy of Sciences, Husinec – Řež 130, 250 68Řež, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Strong multiple Bragg reflections (MBRs) which can be realized in a bent-perfect-crystal (BPC) slab provide a monochromatic beam of excellent resolution parameters. For identifying MBR effects in the BPC Si crystal, we used the method of azimuthal rotation of the crystal lattice around the scattering vector of the primary forbidden Si(200) reflection for a fixed chosen wavelength. In this paper, several azimuthal scans searching strong MBR effects with the intention of a possible practical exploitation for very high-resolution diffractometry are presented.

Type
Technical Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, S. L. (1984). Multiple Diffraction of X-rays in Crystals (Springer Verlag, Berlin).CrossRefGoogle Scholar
Kuich, G. and Rauch, H. (1965). “Kohärente Extinktion und Streuung zweiter Ordnung von Neutronen an Einkristallen,” Acta Phys. Austriaca 20, 716.Google Scholar
Kuich, G. and Rauch, H. (1967). “Intensitätsänderung durch kohärente Extinktion bei Streuung von Neutronen an Einkristallen,” Nukleonik 9, 139142.Google Scholar
Mikula, P. and Vrána, M. (2015). “New type of versatile diffractometer with a double-crystal (DC) monochromator system,” Powd. Diffr. 30(Suppl. S1), S41S46.10.1017/S0885715614001201CrossRefGoogle Scholar
Mikula, P., Vrána, M., and Wagner, V. (2008b). “Chapter 5 - Diffraction optics,” in Modern Developments in X-ray and Neutron Optics, Vol. 137, edited by Erko, A., Idir, M., Krist, T., and Michette, A. G. (Springer, Berlin/Heidelberg), pp. 459470.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Lukáš, P., Šaroun, J., and Wagner, V. (1996). “High-resolution neutron powder diffractometry on samples of small dimensions,” Mater. Sci. Forum 228–231, 269274.CrossRefGoogle Scholar
Mikula, P., Kulda, J., Lukáš, P., Vrána, M., Ono, M., and Sawano, J. (2000). “Instrumentation components of focusing diffraction used in NPI, ILL, KURRI and PTB,” Physica B 276–278, 174176.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Lott, D., and Wagner, V. (2006a). “Neutron monochromator based on dispersive double-reflections excited in a cylindrically bent-perfect-crystal (BPC) slab,” Physica B 385–386, 12741276.CrossRefGoogle Scholar
Mikula, P., Vrána, M., and Wagner, V. (2006b). “Multiple-reflection neutron bent-perfect-crystal (BPC) monochromator,” Z. Kristallogr. Suppl. 23, 205210.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Wagner, V., and Furusaka, M. (2008a). “Multiple reflections (MR) – a new challenge for high-resolution neutron diffractometry and spectrometry,” Nucl. Instrum. Methods Phys. Res. A 586, 1822.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Šaroun, J., Seong, B. S., and Em, V. (2011a). “Multiple reflections accompanying allowed and forbidden single reflections in bent Si-crystals,” Z. Kristallogr. 1, 169174.Google Scholar
Mikula, P., Vrána, M., Šaroun, J., Seong, B. S., Em, V., and Moon, M. K. (2011b). “Multiple neutron Bragg reflections in single crystals should not be considered negligible,” Nucl. Instrum. Methods Phys. Res. A 634, S108S111.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Šaroun, J., Davydov, V., Em, V., and Seong, B. S. (2012). “Experimental studies of dispersive double reflections excited in cylindrically bent perfect-crystal slabs at a constant neutron wavelength,” J. Appl. Cryst. 45, 98105.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Šaroun, J., Krejčí, F., Seong, B. S., Woo, W., and Furusaka, M. (2013). “Some properties of the neutron monochromatic beams obtained by multiple Bragg reflections realized in bent perfect single crystals,” J. Appl. Cryst. 46(Part 2), 128134.CrossRefGoogle Scholar
Mikula, P., Vrána, M., Pilch, J., Šaroun, J., Seong, B. S., Woo, W., and Em, V. (2014a). “Focusing and reflectivity properties of a parallel double bent crystal (+n,-m) setting,” J. Phys.: Conf. Ser. 528, 012003.Google Scholar
Mikula, P., Vrána, M., Seong, B. S., Woo, W., Em, V., and Korytár, D. (2014b). “Neutron diffraction studies of a high resolution double crystal (+n,-m) setting containing Si(220) and Si(311) bent perfect crystals in symmetric and fully asymmetric diffraction geometry, respectively,” J. Phys.: Conf. Ser. 528, 012004.Google Scholar
Mikula, P., Vrána, M., Pilch, J., Seok Seong, B., Woo, W., and Em, V. (2014c). “Neutron diffraction studies of double crystal (+n,-m) setting containing a fully asymmetric diffraction geometry (FAD) of a bent perfect crystal (BPC) with the output beam expansion (OBE),” J. Appl. Cryst. 47(Part 2), 599605.CrossRefGoogle Scholar
Moon, R. and Shull, C. G. (1964). “The effects of simultaneous reflections on single-crystal neutron diffraction intensities,” Acta Cryst. 17, 805812.CrossRefGoogle Scholar
Pinsker, Z. G. (1982). X-ray Crystal Optics (Nauka, Moscow).Google Scholar
Popovici, M. and Yelon, W. B. (1994). “Design of microfocusing bent-crystal double monochromators,” Nucl. Instrum. Methods Phys. Res. A 338, 132135.CrossRefGoogle Scholar
Popovici, M. and Yelon, W. B. (1995). “Focusing monochromators for neutron diffraction,” J. Neutron Res. 3, 125.CrossRefGoogle Scholar
Renninger, M. (1937). “‘Umweganregung’, eine bisher unbeachtete Wechselwirkungs-erscheinung bei Raumgitterinterferenzen,” Z. Phys. 106, 141176.CrossRefGoogle Scholar
Renninger, M. (1960). “Die verbotenen Reflexe von Diamant, Silicium und Germanium,” Z. Kristallogr. 113, 99103.CrossRefGoogle Scholar
Šaroun, J., Mikula, P., and Kulda, J. (2011). “Monte Carlo simulations of parasitic and multiple reflections in elastically bent perfect single-crystals,” Nucl. Instrum. Methods Phys. Res. A 634, S50S54.CrossRefGoogle Scholar
Seong, B. S., Em, V., Mikula, P., Šaroun, J., and Kang, M. H. (2010). “Optimization of the bent perfect Si(111) monochromator, at small (~30o) take-off angle for stress instrument,” J. Appl. Cryst. 43, 654658.CrossRefGoogle Scholar
Vogt, T., Passell, L., Cheung, S., and Axe, J. D. (1994). “Using wafer stacks as neutron monochromators,” Nucl. Instrum. Methods Phys. Res. A 338, 7177.CrossRefGoogle Scholar
Wimpory, R. C., Mikula, P., Šaroun, J., Poeste, T., Li, J., Hoffman, M., and Schneider, R. (2008). “Efficiency boost of the materials science diffractometer E3 at BENSC: one order of magnitude due to a double focusing monochromator,” Neutron News 19, 1619.CrossRefGoogle Scholar
Woo, W., Em, V., Seong, B. S., Shin, E., Mikula, P., Joo, J., and Kang, M. H. (2011). “Effect of wavelength-dependent attenuation on neutron diffraction stress measurements at depth in steels,” J. Appl. Cryst. 44, 747754.CrossRefGoogle Scholar