Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T14:08:08.678Z Has data issue: false hasContentIssue false

Nuclear and charge density distributions in ferroelectric PbTiO3: maximum entropy method analysis of neutron and X-ray diffraction data

Published online by Cambridge University Press:  10 September 2013

Jinlong Zhu
Affiliation:
LANSCE and EES Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
Wei Han
Affiliation:
National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
Jianzhong Zhang
Affiliation:
LANSCE and EES Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Hongwu Xu
Affiliation:
LANSCE and EES Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Sven C. Vogel
Affiliation:
LANSCE and EES Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Changqing Jin*
Affiliation:
National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
Fujio Izumi
Affiliation:
National Institute for Materials Science, 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
Koichi Momma
Affiliation:
National Institute for Materials Science, 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
Yukihiko Kawamura
Affiliation:
National Institute for Materials Science, 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
Yusheng Zhao*
Affiliation:
LANSCE and EES Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China HiPSEC, Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154
*
a) Authors to whom correspondence should be addressed. Electronic mail: [email protected]; [email protected]
a) Authors to whom correspondence should be addressed. Electronic mail: [email protected]; [email protected]

Abstract

We conducted in-situ high-temperature neutron and X-ray diffraction studies on tetragonal PbTiO3. Using a combination of Rietveld analysis and Maximum Entropy Method, the nuclear and charge density distributions were determined as a function of temperature up to 460 °C. The ionic states obtained from charge density distributions reveal that the covalency of Pb–O2 bonds gradually weakens with increasing temperature. The spontaneous polarizations calculated from the contributions of ionic state, ionic displacement, and nuclear polarization, are in good agreement with the experimental measurements. This method provides an effective approach to determine spontaneous polarizations in multiferroics with high-current leakage and low resistance.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoyagi, S., Kuroiwa, Y., Sawada, A., Tanaka, H., Harada, J., Nishibori, E., Takata, M., and Sakata, M. (2002). “Direct observation of covalency between O and disordered Pb in Cubic PbZrO3 ,” J. Phys. Soc. Jpn. 71, 23532356.CrossRefGoogle Scholar
Cohen, R. E. (1992). “Origin of ferroelectricity in perovskite oxides,” Nature (London) 358, 136138.CrossRefGoogle Scholar
Fontana, M. D., Idrissi, H., and Wojcik, K. (1990). “Displacive to order-disorder crossover in the Cubic-Tetragonal phase transition of PbTiO3 ,” Europhys. Lett. 11, 419424.CrossRefGoogle Scholar
Gavrilyachenko, V. G., Spinko, R. I., Martynenko, M. A., and Fesenko, E. G. (1970). “Spontaneous polarization and coercive field of lead titanate,” Sov. Phys. Solid State 12, 1203.Google Scholar
Glazer, A. M. and Mabud, S. A. (1978). “Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3 ,” Acta Crystallogr. B 34, 10651070.CrossRefGoogle Scholar
Hoshikawa, A., Igawa, N., Yamauchi, H., and Ishii, Y. (2005). “Neutron powder diffraction study of methane deuterohydrate by the maximum entropy method,” J. Phys. Chem. Sol. 66, 18101814.CrossRefGoogle Scholar
Igawa, N., Taguchi, T., Hoshikawa, A., Fukazawa, H., Yamauchi, H., Utsumi, W., and Ishii, Y. (2010). “CO2 motion in carbon dioxide deuterohydrate determined by applying maximum entropy method to neutron powder diffraction data,” J. Phys. Chem. Sol. 71, 899905.CrossRefGoogle Scholar
Izumi, F. (2004). “Beyond the ability of Rietveld analysis: MEM-based pattern fitting,” Solid State Ionics 172, 16.CrossRefGoogle Scholar
Izumi, F. and Kawamura, Y. (2006). “Three-dimensional visualization of nuclear densities by MEM analysis from time-of-flight neutron powder diffraction data,” Bunseki Kagaku 55, 391395.CrossRefGoogle Scholar
Izumi, F. and Momma, K. (2011). “Three-dimensional visualization of electron- and nuclear-density distributions in inorganic materials by MEM-based technology,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 022001.CrossRefGoogle Scholar
Kuroiwa, Y., Aoyagi, S., Sawada, A., Harada, J., Nishibori, E., Takata, M., and Sakata, M. (2001). “Evidence for Pb-O covalency in tetragonal PbTiO3 ,” Phys. Rev. Lett. 87, 217601.CrossRefGoogle ScholarPubMed
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Nelmes, R. J. and Kuhs, W. F. (1985). “The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K,” Sol. Stat. Commun. 54, 721723.CrossRefGoogle Scholar
Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A. (2008). “Experimental visualization of lithium diffusion in LixFePO4 ,” Nat. Mater. 7, 707711.CrossRefGoogle ScholarPubMed
Remeika, J. P. and Glass, A. M. (1970). “The growth and ferroelectric properties of high resistivity single crystals of lead titanate,” Mater. Res. Bull. 5, 3745.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Sakata, M. and Sato, M. (1990). “Accurate structure analysis by the maximum-entropy method,” Acta Crystallogr. Sect. A 46, 263270.CrossRefGoogle Scholar
Shirane, G. and Hoshino, S. (1951). “On the phase transition in lead titanate,” J. Phys. Soc. Jpn. 6, 265270.CrossRefGoogle Scholar
Takata, M., Nishibori, E., Kato, K., Sakata, M., and Moritomo, Y. (1999). “Direct observation of orbital order in manganites by MEM charge-density study,” J. Phys. Soc. Jpn. 68, 21902193.CrossRefGoogle Scholar
Vogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H. R., and Williams, D. J. (2004). “Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method,” Powder Diffr. 19, 6568.CrossRefGoogle Scholar
Wenk, H.-R., Lutterotti, L., and Vogel, S. (2003). “Texture analysis with the new HIPPO TOF diffractometer,” Nucl. Instrum. Methods Phys. Res., Sect. A 515, 575588.CrossRefGoogle Scholar
Yashima, M. (2009). “Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors – A brief review,” J. Ceram. Soc. Jpn. 117, 10551059.CrossRefGoogle Scholar