Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T05:53:03.634Z Has data issue: false hasContentIssue false

New phases and solid solutions in the systems PbO–Bi2O3–P2O5/As2O5/V2O5a)

Published online by Cambridge University Press:  10 January 2013

Y. C. Jie
Affiliation:
Mineralogisch-Petrographisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany
W. Eysel
Affiliation:
Mineralogisch-Petrographisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany

Abstract

The systems PbO–Bi2O3–P2O5/As2O5/V2O5 have been studied with respect to their compounds and solid solutions. A number of new compounds, particularly with high-Bi contents were found. Most of them are structurally closely related to the CaF2 and δ-Bi2O3 structures. Several binary and ternary solid solutions with P/As/V substitutions were investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F., Debreuille-Gresse, M. F., Mairesse, G., and Nowogrocki, G. (1988). “Phase Transitions and Ionic Conductivity in Bismuth Vanadate (Bi4V2O11), an Oxide with a Layered Structure,” Solid State Ionics 28–30, 529532.Google Scholar
Argyle, J. F., and Hummel, F. A. (1960). “Dilatometric and X-ray Data for Lead Compounds,” J. Am. Ceram. Soc. 43, 452457.Google Scholar
Bagieu-Beucher, M., and Averbuch-Pouchot, M. T. (1987). “Crystal Data and Crystal Structure of Tetraphosphate: Bi2P4O13,” Z. Kristallogr. 180, 165170.Google Scholar
Battle, P. D., Catlow, C. R. A., Drennan, J., and Murray, A. D. (1983). “The Structural Properties of the Oxygen Conducting Delta Phase of Bi2O3,” J. Phys. Chem. 16, 561566.Google Scholar
Baiocchi, E., Bettinelu, M., and Montenero, A. (1982). “New Phases in Equimolar PbO–V2O5 System,” J. Solid State Chem. 43, 6372.Google Scholar
Bedlivy, D., and Mereiter, K. (1982). “Structure of α-BiAsO4 (Roosevelitite),” Acta Cryst. 38, 15591561.CrossRefGoogle Scholar
Blinovskov, Ya. N., and Fotiev, A. A. (1987). “The Bi2O3-V2O5 system,” Russ. J. Inorg. Chem. 32, 145146.Google Scholar
Boivin, J. C., Tomas, D., Canonne, J., Verbaere, A., Mehaute, A. L., and Broussely, M. (1987). “Nouveaux Materiaux Cathodiques pour Generateures a Anode de Lithium: les Oxydes Mixtes de Bismuth et de Plomb, 2iére Partie: Etude électrochimique et Radiocrystallographique du Processus de Réduction, New Cathode Materials for Lithium Batteries: Lead Bismuth Mixed Oxides,” Mat. Res. Bull. 22, 439445.Google Scholar
Brixner, L. H., Bierstedt, P. E., and Foris, C. M. (1972). “Crystal Growth and Properties of the Lead Phosphate Pb5P4O15,” Mat. Res. Bull. 7, 883890.Google Scholar
Brixner, L. H. (1973). “Crystal Growth Properties of the Lead Pyrophosphate, Pb2P2O7,” J. Solid State Chem. 6, 430432.Google Scholar
Brixner, L. H., and Foris, C. M. (1973). “Crystal Growth and X-ray Data of the Lead Phosphates Pb4P2O9 and Pb8P2O13,” J. Solid State Chem. 7, 149154.Google Scholar
Brixner, L. H., and Foris, C. M. (1974). “PbBiVO5—A New Bismuth Lead Vanadate,” Mat. Res. Bull. 9, 273276.Google Scholar
Calestani, G., Andereetti, G. D., Montenero, A., and Bettinelli, M. (1985a). “Structure of Lead Metavanadates: the Monoclinic PbV2O6(II) Modification,” Acta Cryst. 41, 177179.Google Scholar
Calestani, G., Andereetti, G. D., Montenero, A., and Bettinelli, M. (1985b). “Structure of Lead Metavanadates: the Orthohombic PbV2O6(III) Modification,” Acta Cryst. 41, 179182.Google Scholar
Calestani, G., (1985). “Glassy and Crystalline Phases in the PbO–P2O5 System,” J. Solid State Chem. 59, 357361.Google Scholar
Hardcastle, F. D., and Wachs, I. E. (1991). “Vanadium(V) Environments in Bismuth Vanadates: A Structural Investigation Using Raman Spectroscopy and Solid State 51V NMR,” J. Solid State Chem. 90, 194210.Google Scholar
Hilmer, N., (1978). “Condensed Bismuth Phosphates,” Inorg. Mater. (English trans.) 14, 11781184.Google Scholar
Hodenberg, R. V. (1974). “Zu den Modifikationen im System Pb3(PO4)2–Pb3(VO4)2–Pb3(AsO4)2,” Ber. Deutsche Keram. Ges. 51, 6468.Google Scholar
Jian-Cheng, L., and Jia-Ping, L. (1983). “Crystal Structure and Optical Observation of BiVO4,” Wu Li Hsueh Pao 32, 10531060.Google Scholar
Jie, Y. C., and Eysel, W. (1993a). “Neue Phosphate, Arsenate und Vanadate,” Z. Kristallogr. Suppl. 7, P92.Google Scholar
Jie, Y. C., and Eysel, W. (1993b). “New Compounds in Systems Bi2O3–PbO/SrO–P2O5/As2O5/V2O5,” Acta Cryst. A 49, Abstract PS-08.01.37.Google Scholar
Jie, Y. C., and Eysel, W. (1993c). “New Phases in the Systems Bi2O3–PbO–P2O5/As2O/V2O5”. EPDIC-3. Vienna, Austria, Abstract, P238.Google Scholar
Kiat, J. M., Gamier, P., and Pinot, M. (1991). “Neutron and X-Ray Riedveld Analysis of the Three Phases of Lead Orthovanadate Pb3V2O8: Importance of the Electric Lone Pairs in the Martensitic Transition,” J. Solid State Chem. 91, 339349.Google Scholar
Mooney, R. C. L. (1948). “Crystal Structure of Tetragonal Bismuth Arsenate, BiAsO4,” Acta Cryst. 1, 163165.CrossRefGoogle Scholar
Mooney, R. C. L. (1962). “Polymorphic Forms of Bismuth Phosphate,” Z. Kristallogr. 117, 371385.CrossRefGoogle Scholar
Moore, E. P., Chen, H. Y., Brixner, L. H., and Foris, C. M. (1982). “The Crystal Structure of Pb8Bi2[PO4]6O2,” Mat. Res. Bull. 17, 653660.CrossRefGoogle Scholar
Murry, A. D., and Catlow, C. R. A. (1986). “A Neutron Diffraction Study of the Low- and High-Temperature Structure of Bi12PbO19,” J. Solid State Chem. 62, 290296.Google Scholar
Narbar, M. A., and Dalvi, A. P. (1978). “Crystal Data for Lead Diarsenate Pb2As2O7,” J. Appl. Cryst. 11, 162.CrossRefGoogle Scholar
Palkina, K., and Jost, K. H. (1975). “Crystal Structure of Bismuth Polyphosphate, (Bi[PO3]3)x,” Acta Cryst. B 31, 22812290.Google Scholar
Shannon, R. D., and Calvo, C. (1973). “Refinement of the Crystal Structure of Synthetic Chervetite, Pb2V2O7,” Can. J. Chem. 51, 7076.CrossRefGoogle Scholar
Sharma, V., Shukla, A. K., and Gopalakrisnan, J. (1992). “Effect of Aliovalent-Cation Substitution on the Oxygen-Ion Conductivity of Bi4V2O11,” Solid State Ionics 58, 359362.Google Scholar
Tezikova, L. A., Chudinova, N. N., Fedorov, P. M., and Lavrov, A. V. (1974). “Bismuth Acid Pyrophosphate,” Russ, Inorg. Mat. 10, 20572063.Google Scholar
Touboul, M., Lokaj, J., Tessier, L., Kettman, V., and Vrabel, V. (1992). “Structure of Dibismuth Vanadate Bi2VO5.5,” Acta Cryst. 48, 11761179.Google Scholar
Vannier, R. N., Mairesse, G., Abraham, F., and Nowogrocki, G. (1993). “Incommensurate Superlattice in Mo-Substituted Bi4V2O11,” J. Solid State Chem. 103, 441446.CrossRefGoogle Scholar
Varma, K. B. R., Subbanna, G. N., Gururow, T. N., and Rao, C. N. A. (1990). “Synthesis and Characterization of Layered Bismuth Vanadates,” J. Mater. Res. 5, 27182722.Google Scholar
Viswanathan, K., and Miehe, G. (1978). “The Structure of Low Temperature Pb3[AsO4]2,” Z. Kristallogr. 148, 275280.Google Scholar
Volkov, V. V., Zhereb, L. A., Kargin, Y. F., Skorikov, V. M., and Tananeav, I. V. (1983). “The Bi2O3–P2O5 System,” Russ. Inorg. Chem. 28, 10021005.Google Scholar
Wang, P-L., and Li, D-Y. (1985). “The Crystal Structure of Bi2Pb2V2O10,” Wu Li Hsueh Pao 34, 235240.Google Scholar
Watanabe, A., Horiuchi, S., and Kodama, H. (1990). “Nonstoichiometric Phase with Sillenite-Type Structure in the System Bi2O3–P2O5,” J. Solid State Chem. 85, 7682.Google Scholar
Watanabe, A., Takenouchi, S., Konflant, P., Wignacourt, J. P., Drache, M., and Boivin, J. C. (1993). “Preparation of a Nonstoichiometric Sillenite-Type Phase in the System Bi2O3–As2O5,” J. Solid State Chem. 103, 5762.Google Scholar
Wetzel, A. (1990). “Methodisch-pulverdiffractometrische Untersuchungen und Anwendungen auf das System Bi2O3–PbO–GeO2 und an Hydroxylapatitkeramiken,” Diplom Thesis. Mineralogisch-Petrog. Inst. der Universität Heidelberg.Google Scholar
Wignacourt, J. P.Drache, M., Conflant, P., and Boivin, J. C. (1990a). “Nouvelles Phases du Système Bi2O3–BiPO4 I: Description du Diagramme de Phases,” J. Chim. Phys. 88, 19331938.Google Scholar
Wignacourt, J. P., Drache, M., Conflant, P., and Boivin, J. C. (1990b). “Nouvelles Phases du Système Bi2O3–BiPO4 II: Structures et Propriètès Électriques d'une Solution Solide de Type Sillènite,” J. Chim. Phys. 88, 19391949.CrossRefGoogle Scholar
Wignacourt, J. P.Drache, M., and Conflant, P. (1993). “A New Oxide Conductor Family: Bi7(P1–yVy)O13,” J. Solid State Chem. 105, 4448.Google Scholar
Willis, B. T. M. (1965). “The anomalous Behaviour of the Neutron Reflections of Fluorite,” Acta Crystallogr. 18, 7577.Google Scholar
Zhou, W. (1988). “Defect Fluorite-related Superstructures in the Bi2O3–V2O5 System,” J. Solid State Chem. 76, 290300.CrossRefGoogle Scholar
Zhou, W. (1990). “The Type II Superstructural Family in the Bi2O3–V2O5 System,” J. Solid State Chem. 87, 4454.Google Scholar