Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T19:28:17.723Z Has data issue: false hasContentIssue false

Near-surface in vitro studies of plasma sprayed hydroxyapatite coatings

Published online by Cambridge University Press:  05 March 2012

T. P. Ntsoane*
Affiliation:
Research and Development Division, NECSA Limited, P.O. Box 582, Pretoria, 0001, South Africa
M. Topic
Affiliation:
Department of Materials Research, iThemba Laboratory, P.O. Box 722, Somerset West, 7129, South Africa
R. Bucher
Affiliation:
Department of Materials Research, iThemba Laboratory, P.O. Box 722, Somerset West, 7129, South Africa
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Coatings of plasma sprayed hydroxyapatite (HAp), incubated in simulated body fluid for periods varying from 1 to 56 days, were characterized using conventional laboratory X rays. Quantitative phase analysis, employing TOPAS software, showed an opposite trend in the two main phases of the coating, viz., HAp and tetracalcium phosphate (TTCP). The former increased within the first 7 days of incubation whilst the latter decreased during the same period; both phases stabilized with further incubation. The crystallinity of the coatings exhibited a trend similar to that of HAp i.e., an increase in the early stages of incubation stabilization with further incubation. Results of residual stress determined with Bruker’s D8 Discover and analyzed with LEPTOS software, showed both the normal stress tensor components, σ11 and σ22, to be tensile, relaxing significantly in the early stages of incubation before stabilizing with further incubation.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. R., Turner, I. G., and Reiter, H. (1994). “Residual stress measurement in thermal sprayed hydroxyapatite coatings,” J. Mater. Sci. Mater. Med. 5, 756759. 10.1007/BF00120371CrossRefGoogle Scholar
Bruker (2007). Diffracplus Basic Evaluation Package (Computer Software) Karlsruhe, Germany.Google Scholar
Bruker (2008). DiffracplusLEPTOS v6 (Computer Software) Karlsruhe, Germany.Google Scholar
Chern Lin, J. H., Liu, M. L., and Ju, C. P. (1994). “Morphologic variation in plasma-sprayed hydroxyapatite-bioactive glass composite coating in Hank’s solution,” J. Biomed. Mater. Res. JBMRBG 28, 273730. 10.1002/jbm.820280609Google Scholar
Coelho, A. A. (2007). TOPAS-ACADEMIC, version 4.1 (Computer Software), Coelho Software, Brisbane, Australia.Google Scholar
Colen, T. (2000). “Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants,” Ophthalmology (Philadelphia) OPHTDG 107, 18891894. 10.1016/S0161-6420(00)00348-1CrossRefGoogle ScholarPubMed
de Groot, K., Geesink, R., Klein, C. P. A. T., and Serekian, P. (1987). “Plasma sprayed coatings of hydroxylapatite,” J. Biomed. Mater. Res. JBMRBG 21, 13751381. 10.1002/jbm.820211203CrossRefGoogle ScholarPubMed
Ducheyne, P., Radin, S., and King, L. (1993). “The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution,” J. Biomed. Mater. Res. JBMRBG 27, 2534. 10.1002/jbm.820270105CrossRefGoogle ScholarPubMed
Fazan, F., and Marquis, P. M. (2000). “Dissolution behavior of plasma-sprayed hydroxyapatite coatings,” J. Mater. Sci. Mater. Med. 11, 787792. 10.1023/A:1008901512273CrossRefGoogle ScholarPubMed
Geesink, R. G. T., de Groot, K., and Klein, C. P. A. T. (1987). “Chemical implant fixation using hydroxyl-apatite coatings: The development of a human total hip prothesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates,” Clin. Orthop. Relat. Res. CORTBR 225, 147170.CrossRefGoogle Scholar
Gross, K. A., Benrdt, C. C., and Herman, H. (1998). “Amorphous phase formation in plasma-sprayed hydroxyapatite coatings,” J. Biomed. Mater. Res. JBMRBG 39, 407414. 10.1002/(SICI)1097-4636(19980305)39:3<407::AID-JBM9>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gross, K. A., and Berndt, C. C. (1998). “Thermal processing of hydroapatite for coating production,” J. Biomed. Mater. Res. JBMRBG 39, 580587. 10.1002/(SICI)1097-4636(19980315)39:4<580::AID-JBM12>3.0.CO;2-B3.0.CO;2-B>CrossRefGoogle Scholar
Habibovic, P., Li, J., van der Valk, C. M., Meijer, G., Layrolle, P., van Blitterswijk, C. A., and de Groot, K. (2005). “Biological performance of uncoated and octacalcium phosphate- coated Ti6Al4V,” Biomaterials BIMADU 26, 2336. 10.1016/j.biomaterials.2004.02.026CrossRefGoogle ScholarPubMed
He, B. B., Preckwinkel, U., and Smith, K. L. (2000). “Fundamentals of two-dimensional X-ray diffraction (XRD2),” Adv. X-Ray Anal. AXRAAA 43, 273280.Google Scholar
Klein, C. P. A. T., Patka, P., Wolke, J. G. C., de Bliek-Hogervorst, J. M. A., and de Groot, K. (1994). “Long term in vivo study of plasma sprayed coatings on titanium alloy of tetra calcium phosphate, hydroxyapatite and alpha tricalcium phosphate,” Biomaterials BIMADU 15, 146150. 10.1016/0142-9612(94)90264-XCrossRefGoogle Scholar
Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., and Yamamuro, T. (1990). “Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W,” J. Biomed. Mater. Res. JBMRBG 24, 721734. 10.1002/jbm.820240607CrossRefGoogle ScholarPubMed
Lu, X., and Leng, Y. (2004). “TEM study of calcium phosphate precipitation on bioactive titanium surfaces,” Biomaterials BIMADU 25, 17791786. 10.1016/j.biomaterials.2003.08.028CrossRefGoogle ScholarPubMed
Matejicek, J., Sampath, S., Brand, P. C., and Prask, H. (1999). “Quenching, thermal and residual stress in plasma sprayed deposits: NiCrAlY and YSZ coatings,” Acta Metall. AMETAR 47, 607617. 10.1016/S1359-6454(98)00360-7Google Scholar
Noyan, I. C., and Cohen, J. B. (1987). Residual Stress Measurement by Diffraction and Interpretation (Springer-Verlag, New York).Google Scholar
Nye, J. F. (1957). Physical Properties of Crystal (Clarendon, Oxford).Google Scholar
Radin, S. R., and Ducheyne, P. (1992). “Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability,” J. Mater. Sci.: Mater. Med. JSMMEL 3, 3342. 10.1007/BF00702942Google Scholar
Sergo, V., Sbaizero, O., and Clarke, D. R. (1997). “Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings,” Biomaterials BIMADU 18, 477482. 10.1016/S0142-9612(96)00147-0CrossRefGoogle ScholarPubMed
Sun, L., Berndt, C. C., Khor, K. A., Cheang, H. N., and Gross, K. A. (2002). “Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating,” J. Biomed. Mater. Res. JBMRBG 62, 228236. 10.1002/jbm.10315CrossRefGoogle ScholarPubMed
Yang, C. Y., Wang, B. C., Chang, E., and Wu, J. D. (1995). “The influence of plasma spraying parameters on the characteristics of hydroxyapatite coatings: A quantitative study,” J. Mater. Sci.: Mater. Med. JSMMEL 6, 249257. 10.1007/BF00120267Google Scholar
Yang, Y. C., Chang, E., and Lee, S. Y. (2003). ““Mechanical properties and Young’s modulus of plasma-sprayed hydroxyapatite coating on Ti substrate in simulated body fluid,” J. Biomed. Mater. Res. Part A ZZZZZZ 67, 886899. 10.1002/jbm.a.10145CrossRefGoogle ScholarPubMed