Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T05:37:11.009Z Has data issue: false hasContentIssue false

The mystery of birefringent garnet: is the symmetry lower than cubic?

Published online by Cambridge University Press:  24 July 2013

Sytle M. Antao*
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The cause of birefringence in several garnet-group minerals with general chemical formula, [8]X3 [6]Y2 [4]Z3 [4]O12, which was observed over 100 years ago, is unknown, although many different reasons were proposed, including symmetry lower than cubic. In this study, electron microprobe analyses (EMPA) were obtained for a Ti-rich andradite, ideally Ca3(Fe2 3+)Si3O12, from Magnet Cove, Arkansas, USA, and the results show that the sample is inhomogeneous with two distinct compositions. The crystal structure was refined by the Rietveld method, cubic space group $Ia\overline 3 d$ , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, which shows a mixture of three distinct cubic phases that are intergrown together and cause birefringence because of strain arising from small structural mismatch. This mixture of three cubic phases was not observed by any other experimental technique. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, I., Gatta, G. D., Rotitoti, N., Diella, V., and Pavese, A. (2010). “Green andradite stones: gemological and mineralogical characterisation,” Eur. J. Miner. 23, 91100.Google Scholar
Agrosì, G., Schingaro, E., Pedrazzi, G., Scandale, E., and Scordari, R. (2002). “A crystal chemical insight into sector zoning of a titanian andradite (“melanite”) crystal,” Eur. J. Miner. 14, 785794.CrossRefGoogle Scholar
Akaogi, M. and Akimoto, S. (1977). “Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4012-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures,” Phys. Earth Planet. Interiors 15, 90106.CrossRefGoogle Scholar
Akizuki, M. (1984). “Origin of optical variations in grossular-andradite garnet,” Am. Miner. 66, 403409.Google Scholar
Akizuki, M., Takéuchi, Y., Terada, T., and Kudoh, Y. (1998). “Sectoral texture of a cubo-dodecahedral garnet in grandite,” Neues Jahrbuch für Mineralogie, Monatshefte 12, 565576.Google Scholar
Allen, F. M. and Buseck, P. R. (1988). “XRD, FTIR, and TEM studies of optically anisotropic grossular garnets,” Am. Miner. 73, 568584.Google Scholar
Angel, R., Finger, L. W., Hazen, R. M., Kanzaki, M., Weidner, D. J., Liebermann, R. C., and Veblen, D. R. (1989). “Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C,” Am. Miner. 74, 509512.Google Scholar
Antao, S. M. (2013). “Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications,” Phys. Chem. Miner. DOI: 10.1007/s00269-013-0606-4.Google Scholar
Antao, S. M. and Klincker, A. M. (2013). “Origin of birefringence in andradite from Arizona, Madagascar, and Iran,” Phys. Chem. Miner. 40, 575586.Google Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can. Miner. 46, 15011509.Google Scholar
Antao, S. M., Klincker, A. M., and Round, S. A. (2013a). “Origin of birefringence in common silicate garnet: intergrowth of different cubic phases,” Am. Geophys. Union Conference, Cancun, Mexico, 14–17 May, 2013.Google Scholar
Antao, S. M., Klincker, A. M., and Round, S. A. (2013b). “Some garnets are cubic and birefringent, why?,” Conference, Hawaii, USA, 20–24 July, 2013.Google Scholar
Armbruster, T. (1995). “Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa,” Eur. J. Miner. 7, 12211225.Google Scholar
Armbruster, T. and Geiger, C. A. (1993). “Andradite crystal chemistry, dynamic x-site disorder and structural strain in silicate garnets,” Eur. J. Miner. 5, 5971.Google Scholar
Armbruster, T. and Lager, G. A. (1989). “Oxygen disorder and the hydrogen position in garnet-hydrogarnet solid-solutions,” Eur. J. Miner. 1, 363369.Google Scholar
Armbruster, T., Geiger, C. A., and Lager, G. A. (1992). “Single crystal X-ray structure study of synthetic pyrope-almandine garnets at 100 and 293 K,” Am. Miner. 77, 518527.Google Scholar
Armbruster, T., Birrer, J., Libowitzky, E., and Beran, A. (1998). “Crystal chemistry of Ti-bearing andradites,” Eur. J. Miner. 10, 907921.Google Scholar
Badar, M. A., Akizuki, M., and Hussain, S. (2010). “Optical anomaly in iridescent andradite from the Sierra Madre mountains, Sonora, Mexico,” Can. Miner. 48, 11951203.Google Scholar
Badar, M. A., Niaz, S., Hussain, S., and Akizuki, M. (2013). “Lamellar texture and optical anomaly in andradite from the Kamaishi mine, Japan,” Eur. J. Miner. 25, 5360.CrossRefGoogle Scholar
Basso, R., Dellagiusta, A., and Zefiro, L. (1981). “A crystal chemical study of a Ti-containing hydrogarnet,” Neues Jahrbuch Fur Mineralogie-Monatshefte 5, 230236.Google Scholar
Basso, R., Dellagiusta, A., and Zefiro, L. (1983). “Crystal-structure refinement of plazolite - a highly hydrated hatural hydrogrossular,” Neues Jahrbuch Fur Mineralogie-Monatshefte 6, 251258.Google Scholar
Basso, R., Cimmino, F., and Messiga, B. (1984a). “Crystal-chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri-Massif (Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 148, 246258.Google Scholar
Basso, R., Cimmino, F., and Messiga, B. (1984b). “Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 150, 247258.Google Scholar
Bertaut, F. and Forrat, F. (1956). “Structures des ferrites ferrimagnétiques des terres rare,” C. R. Acad. Sci. 243, 382384.Google Scholar
Blanc, Y. and Maisonneuve, J. (1973). “Sur la biréfringence des grenats calciques,” Bull. Soc. Franç. Minér. Cristallogr. 96, 320321.Google Scholar
Brauns, R. (1891). Die optischen Anomalien der Kristalle. Preisschr. (Jablonowski Ges., Leipzig, Germany).Google Scholar
Brown, D. and Mason, R. A. (1994). “An occurrence of sectored birefringence in almandine from the Gangon terrane, Labrador,” Can. Miner. 32, 105110.Google Scholar
Chakhmouradian, A. R. and McCammon, C. A. (2005). “Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries,” Phys. Chem. Miner. 32, 277289.CrossRefGoogle Scholar
Chase, A. B. and Lefever, R. A. (1960). “Birefringence of synthetic garnets,” Am. Miner. 45, 11261129.Google Scholar
Droop, G. T. R. (1987). “A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria,” Miner. Mag. 51, 431435.Google Scholar
Ferro, O., Galli, E., Papp, G., Quartieri, S., Szakall, S., and Vezzalini, G. (2003). “A new occurrence of katoite and re-examination of the hydrogrossular group,” Eur. J. Miner. 15, 419426.Google Scholar
Foord, E. E. and Mills, B. A. (1978). “Biaxiality in “isometric” and “dimetric” crystals,” Am. Miner. 63, 316325.Google Scholar
Frank-Kamenetskaya, O. V., Rozhdestvenskaya, L. V., Shtukenberg, A. G., Bannova, I. I., and Skalkina, Y. A. (2007). “Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3 ,” Struct. Chem. 18, 493503.CrossRefGoogle Scholar
Fujino, K., Momoi, H., Sawamoto, H., and Kumazawa, M. (1986). “Crystal structure and chemistry of MnSiO3 tetragonal garnet,” Am. Miner. 71, 781785.Google Scholar
Ganguly, J., Cheng, W., and O'Neill, H. S. C. (1993). “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Miner. 78, 583593.Google Scholar
Geiger, C. A. and Armbruster, T. (1997). “Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: structural dynamic and thermodynamic properties,” Am. Miner. 82, 740747.Google Scholar
Geiger, C. A., Armbruster, T., Lager, G. A., Jiang, K., Lottermoser, W., and Amthauer, G. (1992). “A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic lmandine: evidence for the Gol'danskii-Karyagin effect,” Phys. Chem. Miner. 19, 121126.Google Scholar
Geller, S. (1967). “Crystal chemistry of garnets,” Z. Kristal 125, 147.Google Scholar
Geller, S. and Gilleo, M. A. (1957). “Structure and ferrimagnetism of yttrium and rare earth iron garnets,” Acta Crystallogr. 10, 239.Google Scholar
Geusic, J. E., Marcos, H. M., and Van Uitert, L. G. (1964). “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4, 182184.CrossRefGoogle Scholar
Gramaccioli, C. M., Pilati, T., and Demartin, F. (2002). “Atomic displacement parameters for spessartine Mn3Al2Si3O12 and their lattice-dynamical interpretation,” Acta Crystallogr. B58, 965969.CrossRefGoogle Scholar
Griffen, D. T., Hatch, D. M., Phillips, W. R., and Kulaksiz, S. (1992). “Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet,” Am. Miner. 77, 399406.Google Scholar
Hatch, D. M. and Ghose, S. (1989). “Symmetry analysis of the phase transition and twinning in MgSiO3 garnet: implications to mantle mineralogy,” Am. Miner. 74, 12211224.Google Scholar
Henmi, C., Kusachi, I., and Henmi, K. (1995). “Morimotoite, Ca3TiFe2+Si3O12, a new titanian garnet from Fuka, Okayama Prefecture, Japan,” Miner. Mag. 59, 115120.Google Scholar
Hofmeister, A. M., Schaal, R. B., Campbell, K. R., Berry, S. L., and Fagan, T. J. (1998). “Prevalence and origin of birefringence in 48 garnets from the pyrope-almandine- grossularite-spessartine quaternary,” Am. Miner. 83, 12931301.Google Scholar
Ingerson, E. and Barksdale, J. D. (1943). “Iridescent garnet from the Adelaide mining district, Nevada,” Am. Miner. 28, 303312.Google Scholar
Ito, E. and Takahashi, E. (1987). “Ultrahigh pressure phase transformations and the constitution of the deep mantle,” in High Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto, Geophysical Monograph, edited by Manghnani, M. H. and Syono, Y., AGU, Washington, D.C. Vol. 39, pp. 221229.Google Scholar
Kato, T. and Kumazawa, M. (1985). “Garnet phase of MgSiO3 filling the pyroxene-ilmenite gap at very high temperature,” Nature 316, 803805.Google Scholar
Kingma, K. J. and Downs, J. W. (1989). “Crystal-structure analysis of a birefringent andradite,” Am. Miner. 74, 13071316.Google Scholar
Kitamura, K. and Komatsu, H. (1978). “Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al,Fe)5O12 ,” Kristallogr. Tech. 13, 811816.Google Scholar
Lager, G. A., Rossman, G. R., Rotella, F. J., and Schultz, A. J. (1987a). “Neutron-diffraction structure of a low-water grossular at 20 K,” Am. Miner. 72, 766768.Google Scholar
Lager, G. A., Armbruster, T., and Faber, J. (1987b). “Neutron and X-ray-diffraction study of hydrogarnet Ca3Al2(O4H4)3 ,” Am. Miner. 72, 756765.Google Scholar
Lager, G. A., Armbruster, T., Rotella, F. J., and Rossman, G. R. (1989). “OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies,” Am. Miner. 74, 840851.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos National Laboratory.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432.Google Scholar
Lessing, P. and Standish, R. P. (1973). “Zoned garnet from Crested Butte, Colorado,” Am. Miner. 58, 840842.Google Scholar
Liu, L. (1977). “The system enstatite-pyrope at high pressures and temperatures and the mineralogy of the Earth's mantle,” Earth Planet. Sci. Lett. 36, 237245.Google Scholar
Locock, A. J. (2008). “An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets,” Comput. Geosci. 34, 17691780.Google Scholar
Munno, R., Rossi, G., and Tadini, C. (1980). “Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy,” Am. Miner. 65, 188191.Google Scholar
Nakatsuka, A., Yoshiasa, A., Yamanaka, T., Ohtaka, O., Katsura, T., and Ito, E. (1999a). “Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3 ,” Am. Miner. 84, 11351143.Google Scholar
Nakatsuka, A., Yoshiasa, A., Yamanaka, T., and Ito, E. (1999b). “Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12 ,” Am. Miner. 84, 199202.Google Scholar
Nakatsuka, A., Chaya, H., and Yoshiasa, A. (2005). “Crystal structure of single-crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1000 °C,” Am. Miner. 90, 755757.Google Scholar
Novak, G. A. and Gibbs, G. V. (1971). “The crystal chemistry of the silicate garnets,” Am. Miner. 56, 17691780.Google Scholar
Novak, G. A. and Meyer, H. O. A. (1970). “Refinement of the crystal structure of a chrome pyrope garnet: an inclusion in natural diamond,” Am. Miner. 55, 21242127.Google Scholar
Parise, J. B., Wang, Y., Gwanmesia, G. D., Zhang, J., Sinelnikov, Y., Chmielowski, J., Weidner, D. J., and Liebermann, R. C. (1996). “The symmetry of garnets on the pyrope (Mg3Al2Si3O12) – majorite (MgSiO3) join,” Geophys. Res. Lett. 23, 37993802.Google Scholar
Peterson, R. C., Locock, A. J., and Luth, R. W. (1995). “Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite,” Can. Miner. 33, 627631.Google Scholar
Prewitt, C. T. and Sleight, A. W. (1969). “Garnet-like structures of high-pressure cadmium germanate and calcium germanate,” Science 163, 386387.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Ringwood, A. E. (1967). “The pyroxene-garnet transformation in the Earth's mantle,” Earth Planet. Sci. Lett. 2, 255263.Google Scholar
Rossman, G. R. and Aines, R. D. (1986). “Spectroscopy of a birefringent grossular from Asbestos, Quebec, Canada,” Am. Miner. 71, 779780.Google Scholar
Sacerdoti, M. and Passaglia, E. (1985). “The crystal structure of katoite and implications within the hydrogrossular group of minerals,” Bull. Miner. 108, 18.Google Scholar
Sawamoto, H. (1987). “Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: phase stability and properties of tetragonal garnet,” in High Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto, Geophysical Monograph, edited by Manghnani, M. H. and Syono, Y., AGU, Washington, D.C. Vol. 39, 209219.Google Scholar
Schingaro, E., Scordari, F., Capitanio, F., Parodi, G., Smith, D. C., and Mottana, A. (2001). “Crystal chemistry of kimzeyite from Anguillara, Mt. Sabatini, Italy,” Eur. J. Miner. 13, 749759.Google Scholar
Schingaro, E., Scordari, F., Pedrazzi, G., and Malitesta, C. (2004). “Ti and Fe speciation by X-ray photoelectron spectroscopy (XPS) and mössbauer spectroscopy for a full crystal chemical characterisation of Ti-garnets from Colli Albani (Italy),” Ann. Chim. 94, 185196.Google Scholar
Scordari, F., Schingaro, E., and Pedrazzi, G. (1999). “Crystal chemistry of melanites from Mt. Vulture (Southern Italy),” Eur. J. Miner. 11, 855869.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Shtukenberg, A. G., Punin, Y. O., Frank-Kamenetskaya, O. V., Kovalev, O. G., and Sokolov, P. B. (2001). “On the origin of anomalous birefringence in grandite garnets,” Miner. Mag. 65, 445459.Google Scholar
Shtukenberg, A. G., Popov, D. Y., and Punin, Y. O. (2005). “Growth ordering and anomalous birefringence in ugrandite garnets,” Miner. Mag. 69, 537550.CrossRefGoogle Scholar
Smyth, J. R., Madel, R. E., McCormick, T. C., Munoz, J. L., and Rossman, G. R. (1990). “Crystal-structure refinement of a F-bearing spessartine garnet,” Am. Miner. 75, 314318.Google Scholar
Takéuchi, Y., Haga, N., Umizu, S., and Sato, G. (1982). “The derivative structure of silicate garnets in grandite,” Z. Kristallogr. 158, 5399.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Weber, H. P., Virgo, D., and Huggins, F. E. (1975). “A neutron-diffraction and 57Fe Mössbauer study of a synthetic Ti-rich garnet,” Carnegie Inst. Wash. Year Book 74, 575579.Google Scholar
Whitney, D. L. and Evans, B. W. (2010). “Abbreviations for names of rock-forming minerals,” Am. Miner. 95, 185187.Google Scholar
Wildner, M. and Andrut, M. (2001). “The crystal chemistry of birefringent natural uvarovites: part II. Single-crystal X-ray structures,” Am. Miner. 86, 12311251.Google Scholar
Wills, A. S. and Brown, I. D. (1999). VaList. CEA, France. This is a freely available computer program.Google Scholar