Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T04:29:10.144Z Has data issue: false hasContentIssue false

Microtwinning hypothesis for a more ordered vaterite model

Published online by Cambridge University Press:  05 March 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures (CNRS UMR 6010), Université du Maine, Av. O. Messiaen, 72085 Le Mans, France
S. Ouhenia
Affiliation:
Laboratoire de Physique, Faculté des Sciences et Sciences de l’Ingénieur, Béjaïa 06200, Algeria
D. Chateigner
Affiliation:
Laboratoire CRISMAT-ENSICAEN (CNRS UMR 6508), IUT-Caen, Université de Caen Basse-Normandie, 6 Bd. M. Juin, 14050 Caen, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

An orthorhombic fully ordered structural model is proposed for vaterite [space group Ama2, a=8.4721(5) Å, b=7.1575(7) Å, c=4.1265(4) Å, Z=4, and V=250.23(4) Å3]. It is based on a microtwinning hypothesis, with three domains rotated by 120° along the orthorhombic a axis, regenerating a pseudohexagonal habit. The solution came from direct space ab initio calculations applied to the powder diffraction data. However, five weak superstructure reflections seen in single-crystal and powder diffraction experiments, leading to a six times larger unit cell, are still unexplained.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, T., Neville, A., and Yuan, M. D. (2005). “Assessing the effect of Mg2+ on CaCO3 scale formation bulk precipitation and surface deposition,” J. Cryst. GrowthJCRGAE 275, e1341e1347.10.1016/j.jcrysgro.2004.11.169CrossRefGoogle Scholar
Dupont, L., Portemer, F., and Figlarz, M. (1997). “Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus,” J. Mater. Chem.JMACEP 7, 797800.10.1039/a607761gCrossRefGoogle Scholar
Falini, G., Albeck, S., Weiner, S., and Addadi, L. (1996). “Control of aragonite or calcite polymorphism by mollusc shell macromolecules,” ScienceSCIEAS 271, 6769.10.1126/science.271.5245.67CrossRefGoogle Scholar
Gehrke, N., Cölfen, H., Pinna, N., Antonietti, M., and Nassif, N. (2005). “Superstructures of calcium carbonate crystals by oriented attachment,” Cryst. Growth Des.CGDEFU 5, 13171319.10.1021/cg050051dCrossRefGoogle Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database—An open-access collection of crystal structures,” J. Appl. Crystallogr.JACGAR 42, 726729.10.1107/S0021889809016690CrossRefGoogle ScholarPubMed
ICDD (2009). “Powder Diffraction File,” edited by Dr.Kabekkodu, Soorya, International Centre for Diffraction Data, Newtown Square, Pennsylvania.Google Scholar
Kamhi, S. R. (1963). “On the structure of vaterite, CaCO3,” Acta Crystallogr.ACSEBH 16, 770772.10.1107/S0365110X63002000CrossRefGoogle Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo from powder diffraction data,” Mater. Sci. ForumMSFOEP 378–381, 6570.10.4028/www.scientific.net/MSF.378-381.65CrossRefGoogle Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr.PODIE2 19, 249254.10.1154/1.1763152CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications—A retrospection,” Powder Diffr.PODIE2 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A., Jacoboni, C., Leblanc, M., De Pape, R., Duroy, H., and Fourquet, J. L. (1988). “Crystal structure of the metastable form of aluminum trifluoride β-AlF3 and the gallium and indium homologs,” J. Solid State Chem.JSSCBI 77, 96101.10.1016/0022-4596(88)90095-3CrossRefGoogle Scholar
Medeiros, S. K., Albuquerque, E. L., Maia, F. F. Jr., Caetano, E. W. S., and Freire, V. N. (2007). “First-principles calculations of structural, electronic, and optical absorption properties of CaCO3 vaterite,” Chem. Phys. Lett.CHPLBC 435, 5964.10.1016/j.cplett.2006.12.051CrossRefGoogle Scholar
Meyer, H. J. (1959). “Uber vaterit und seine struktur,” Angew. Chem., Int. Ed.ACIEF5 71, 678678.Google Scholar
Meyer, H. J. (1969). “Struktur und fehlordnung des vaterits,” Z. Kristallogr.ZEKRDZ 128, 183212.10.1524/zkri.1969.128.3-6.183CrossRefGoogle Scholar
Ouhenia, S., Chateigner, D., Belkhir, M. A., and Guilmeau, E. (2008a). “Microstructure and crystallographic texture of Charonia lampas lampas shell,” J. Struct. Biol.JSBIEM 163, 175184.10.1016/j.jsb.2008.05.005CrossRefGoogle ScholarPubMed
Ouhenia, S., Chateigner, D., Belkhir, M. A., Guilmeau, E., and Krauss, C. (2008b). “Synthesis of calcium carbonate polymorphs in the presence of polyacrilic acid,” J. Cryst. GrowthJCRGAE 310, 28322841.10.1016/j.jcrysgro.2008.02.006CrossRefGoogle Scholar
Pokroy, B., Fieramosca, J. S., Von Dreele, R. B., Fitch, A. N., Caspi, E. N., and Zolotoyabko, E. (2007). “Atomic structure of biogenic aragonite,” Chem. Mater.CMATEX 19, 32443251.10.1021/cm070187uCrossRefGoogle Scholar
Pokroy, B., Fitch, A. N., Lee, P. L., Quintana, J. P., Caspi, E. N., and Zolotoyabko, E. (2006). “Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules,” J. Struct. Biol.JSBIEM 155, 96103.10.1016/j.jsb.2006.03.008CrossRefGoogle ScholarPubMed
Pokroy, B., Quintana, J. P., Caspi, E. N., Berner, A., and Zolotoyabko, E. (2004). “Anisotropic lattice distortions in biogenic aragonite,” Nature Mater.NMAACR 3, 900902.10.1038/nmat1263CrossRefGoogle ScholarPubMed
Qiao, L. and Feng, Q. L. (2007). “Study on twin stacking faults in vaterite tablets of freshwater lacklustre pearls,” J. Cryst. GrowthJCRGAE 304, 253256.10.1016/j.jcrysgro.2007.02.001CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica BPHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Sato, M. and Matsuda, S. (1969). “Structure of vaterite and infrared spectra,” Z. Kristallogr.ZEKRDZ 129, 405410.10.1524/zkri.1969.129.5-6.405CrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr.JACGAR 36, 713.10.1107/S0021889802022112CrossRefGoogle Scholar
Wang, J. and Becker, U. (2009). “Structure and carbonate orientation of vaterite (CaCO3),” Am. Mineral.AMMIAY 94, 380386.10.2138/am.2009.2939CrossRefGoogle Scholar
Wei, H., Shen, Q., Zhao, Y., Wang, D., and Xu, D. (2004). “Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulphate and/or polypyrrolidone,” J. Cryst. GrowthJCRGAE 260, 511516.10.1016/j.jcrysgro.2003.08.047CrossRefGoogle Scholar