No CrossRef data available.
Published online by Cambridge University Press: 10 January 2013
By methods of X-ray structure analysis commensurate (one dimensional) and incommensurate (three-dimensional) modulations of the lazurite structure from Baikal deposits are considered. The analysis of the X-ray diffraction powder and single crystal data showed that the one-dimensional (anisotropic) modulation deforms the lazurite cubic structure and is manifested in a broadening and splitting of sublattice lines on the powder diffraction pattern of the mineral. At a three-dimensional modulation, the cubic structure is maintained. It is concluded that a density modulation is a cause of the incommensurate modulation of the lazurite structure. Due to this arrangement, a crystallographic equivalency of subcells is maintained. The cause of the commensurate modulation is an ordered distribution of intraframework units and the displacement modulation where all atoms of the mineral structure participate.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.