Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:06:44.149Z Has data issue: false hasContentIssue false

Laboratory-based characterization of heteroepitaxial structures: Advanced experiments not needing synchrotron radiation

Published online by Cambridge University Press:  29 February 2012

P. Zaumseil*
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt, Oder, Germany
A. Giussani
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt, Oder, Germany
T. Schroeder
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt, Oder, Germany
*
Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

It is demonstrated that a complex X-ray characterization of semiconductor films epitaxially grown on metal oxide buffer layers and Si(111) substrates is possible using laboratory-based equipment. This is demonstrated with epi-germanium on Pr2O3 as buffer material. Pole figure measurements prove that epi-Ge layers are nearly single crystalline with exactly the same in-plane orientation (type A) as the Si(111) substrate, while the lattice of the oxide layer is 180° rotated around the [111] surface normal (type B). Only a small fraction (less than 0.6 vol %) of the epi-Ge exhibits type B rotation twins. The main structural defects are microtwin lamellas lying in {111} planes 70.5° inclined to the wafer surface. The different in-plane orientation of the Si substrate and epi-Ge on one side and the Pr2O3 buffer layer on the other side allows a very sensitive analysis of strain and defects even for a 10-nm oxide layer buried under a 100-nm Ge. The epi-Ge layers are nearly fully relaxed and the Pr2O3 buffer layer is compressively strained. Due to the existing defects the Ge (111) planes are tilted in a characteristic pattern relative to the Si substrate.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bojarczuk, N. A., Copel, M., Guha, S., Narayanan, V., Preisler, E. J., Ross, F. M., and Shang, H. (2003). “Epitaxial silicon and germanium on buried insulator heterostructures and devices,” Appl. Phys. Lett. APPLAB 83, 54435445.10.1063/1.1637716CrossRefGoogle Scholar
Fitzgerald, E. A. (2005). “Engineered substrates and their future role in microelectronics,” Mater. Sci. Eng., B MSBTEK 124–125, 815.10.1016/j.mseb.2005.08.113CrossRefGoogle Scholar
Giussani, A., Rodenbach, P., Zaumseil, P., Dabrowski, J., Kurps, R., Weidner, G., Müssig, H. -J., Storck, P., Wollschläger, J., and Schroeder, T. (2009). “Atomically smooth and single crystalline Ge(111)/cubic-Pr2O3(111)/Si(111) heterostructures: Structural and chemical composition study,” J. Appl. Phys. JAPIAU 105, 033512.10.1063/1.3068198CrossRefGoogle Scholar
Giussani, A., Seifarth, O., Rodenbach, P., Müssig, H. -J., Zaumseil, P., Weisemöller, T., Deiter, C., Wollschläger, J., Storck, P., and Schroeder, T. (2008). “The influence of lattice oxygen on the initial growth behavior of heteroepitaxial Ge layers on single crystalline PrO2(111)/Si(111) support systems,” J. Appl. Phys. JAPIAU 103, 084110.10.1063/1.2870270CrossRefGoogle Scholar
Hartmann, J. M., Papon, A. M., Destefanis, V., and Billon, T. (2008). “Reduced pressure chemical vapor deposition of Ge thick layers on Si(001), Si(011) and Si(111),” J. Cryst. Growth JCRGAE 310, 52875296.10.1016/j.jcrysgro.2008.08.062CrossRefGoogle Scholar
Hess, R. R., Moore, C. D., and Goorsky, M. S. (1999). “Lattice tilt and relaxation in InGaP/GaAs/Ge solar cells on miscut substrates,” J. Phys. D: Appl. Phys. JPAPBE 32, A16–A20.10.1088/0022-3727/32/10A/304CrossRefGoogle Scholar
IHP. (2009). RCREFSIMW, version 1.09 (simulation software) 〈www.ihp-microelectronics.com〉.Google Scholar
Nagai, H. (1974). “Structure of vapor-deposited GaxIn1−xAs crystals,” J. Appl. Phys. JAPIAU 45, 37893794.10.1063/1.1663861CrossRefGoogle Scholar
Riesz, F., Lischka, K., Rakennus, K., Hakkarainen, T., and Pesek, A. (1991). “Tilting of lattice planes in InP epilayers grown on miscut GaAs substrates: The effect of initial growth conditions,” J. Cryst. Growth JCRGAE 114, 127132.10.1016/0022-0248(91)90687-ZCrossRefGoogle Scholar
Schroeder, T., Zaumseil, P., Seifarth, O., Giussani, A., Müssig, H. -J., Storck, P., Geiger, D., Lichte, H., and Dabrowski, J. (2008). “Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterotructures,” New J. Phys. NJOPFM 10, 113004.10.1088/1367-2630/10/11/113004CrossRefGoogle Scholar
Seo, J. W., Dieker, C., Tapponnier, A., Marchiori, C., Sousa, M., Locquet, J. -P., Fompeyrine, J., Ispas, A., Rossel, C., Panayiotatos, Y., Sotiropoulos, A., and Dimoulas, A. (2007). “Epitaxial germanium-on-insulator grown on (001) Si,” Microelectron. Eng. MIENEF 84, 23282331.10.1016/j.mee.2007.04.019CrossRefGoogle Scholar
Sheldon, P., Yacobi, B. G., Jones, K. M., and Dunlavy, D. J. (1985). “Growth and characterization of GaAs/Ge epilayers grown on Si substrates by molecular beam epitaxy,” J. Appl. Phys. JAPIAU 58, 41864193.10.1063/1.335551CrossRefGoogle Scholar
Waser, R. (2003). Nanoelectronics and Information Technology-Advanced Electronic Materials and Novel Devices (Wiley, Weinheim).Google Scholar
Zaumseil, P. (2008). “X-ray measurement of the tetragonal distortion of the oxide buffer layer in Ge/Pr2O3/Si(111) heteroepitaxial structures,” J. Phys. D JPAPBE 41, 135308.10.1088/0022-3727/41/13/135308CrossRefGoogle Scholar
Zaumseil, P., Giussan, A., Seifart, O., Arguirov, T., Schubert, M. A., and Schroeder, T. (2009). “Characterization of semiconductor films epitaxially grown on thin metal oxide buffer layes,” Solid State Phenom. DDBPE8 156–158, 467472.10.4028/www.scientific.net/SSP.156-158.467CrossRefGoogle Scholar
Zaumseil, P. and Schroeder, T. (2008). “A complex x-ray characterization of heteroepitaxial silicon/insulator/silicon(111) structures,” J. Appl. Phys. JAPIAU 104, 023532.10.1063/1.2960465CrossRefGoogle Scholar