Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T05:36:15.411Z Has data issue: false hasContentIssue false

JCPDS — International Centre for Diffraction Data Sample Preparation Methods in X-Ray Powder Diffraction

Published online by Cambridge University Press:  10 January 2013

R. Jenkins
Affiliation:
JCPDS Data Collection and Analysis Subcommittee
T. G. Fawcett
Affiliation:
The Dow Chemical Co.
D. K. Smith
Affiliation:
The Pennsylvania State University
J. W. Visser
Affiliation:
Technisch Physische Dienst, Delft, The Netherlands
M. C. Morris
Affiliation:
National Bureau of Standards
L. K. Frevel
Affiliation:
The Dow Chemical Co. (Ret.) andJohns Hopkins University

Extract

The aim of any diffraction experiment is to obtain reproducible data of high accuracy and precision so that the data can be correctly interpreted and analyzed. Various methods of sample preparation have been devised so that reproducibility, precision and accuracy can be obtained. The success of a diffraction experiment will often depend on the correct choice of preparation method for the sample being analyzed and for the instrument being used in the analysis.

A diffraction pattern contains three types of useful information: the positions of the diffraction maxima, the peak intensities, and the intensity distribution as a function of diffraction angle. This information can be used to identify and quantify the contents of the sample, as well as to calculate the material's crystallite size and distribution, crystallinity, and stress and strain. The ideal preparation for a given experiment depends largely on information desired.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jenkins, R., Adv. X-Ray Anal., 17, 32 (1974).Google Scholar
2.Burns, J. H. and Bredig, M A., J. Cham. Phys., 25, 1281 (1956).CrossRefGoogle Scholar
3.Schrader, R. and Hoffman, Br., Z. Chem., 6, 388 (1966).CrossRefGoogle Scholar
4.Dandurand, J-L., C. R. Acad. Sci. Paris, Ser. D, 881 (1970).Google Scholar
5.Gregg, S. J., Chem. Ind., 11, 611 (1968).Google Scholar
6.Nothwood, D. O. and Lewis, D., Amer. Miner., 53, 2089 (1968).Google Scholar
7.Lewis, D., Northwood, D. O. and Reeve, R. C., J. Appl. Cryst., 2, 156 (1969).CrossRefGoogle Scholar
8.Senna, M. and Kuno, H., J. Am. Ceram. Soc., 54, 259 (1971).CrossRefGoogle Scholar
9.Dachille, F. and Roy, R., Nature, 186, 34 (1960).CrossRefGoogle Scholar
10.Takahashi, H., 6th Nat. Conf. Clays and Clay Minerals, Pergamon: New York, Vol. 2, 279 (1959).Google Scholar
11.Panis, A, C. R. Seance Acad. Sci. Paris, Ser. D, 1057 (1970).Google Scholar
12.Vegard, L. and Hauge, Th., Z. Physik, 42, 1 (1927).CrossRefGoogle Scholar
13.Dandurand, J-L., C. R. Seance Acad. Sci. Paris, Ser. D, 808 (1970).Google Scholar
14.Lin, I. J., Israel J. Earth Sci., 20, 41 (1971).Google Scholar
15.Burton, T. G., Trans. Inst. Chem. Engrs., 44, 37 (1966).Google Scholar
16.Bloch, J. M., Bull. Soc. Chim. Fr., 774 (1950).Google Scholar
17.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures, 2nd Ed., John Wiley and Sons Inc., N.Y., N.Y. (1974).Google Scholar
18.Parrish, W. and Huang, T. C., Accuracy and Precision of Intensities in X-Ray Polycrystalline Diffraction, Adv. in X-Ray Analysis, 26, 3544 (1983).Google Scholar
19.Morris, M. C.McMurdie, H. F., Evans, E. H., Paretzkin, B., deGroot, J. H., Newberry, R., Hubbard, C. R. and Carmel, S. (1977). Natl. Bur. Stand. (U.S.) Monogr. 25, 14, 15.Google Scholar
20.Morris, M. C., McMurdie, H. F., Evans, E. H., Paretzkin, B., Parker, H. S., Pyrros, N. P. and Hubbard, C. R. (1984). Natl. Bur. Stand. (U.S.) Monogr. 25, 20, 15.Google Scholar
21.Edmonds, J. W., Henslee, W. W. and Guerra, R. E., Anal. Chem., 49, 2196 (1977).CrossRefGoogle Scholar
22.Segal, L., Creely, J. J., Martin, A. E. Jr., and Conrad, C. M., Textile Res. Journal, 786, Oct. (1959).CrossRefGoogle Scholar
23.Calvert, L. D., Sirianni, A. F., Gainsford, G. J. and Hubbard, C. R., Adv. in X-Ray Analysis, 26, 105 (1983) and references therein.Google Scholar
24.Rau, R. C., Norelco Reporter, Vol. X, No. 3, 114 (1963).Google Scholar
25.Vassamillet, L. F. and King, H. W., Adv. in X-Ray Analysis, 6, 142 (1963).Google Scholar
26.Bloss, F. D., Frenzel, G. and Robinson, P. D., Am. Mineral, 52, 1243 (1967).Google Scholar
27.Copeland, L. E. and Bragg, R. H., Preparation of Samples for the Geiger Counter Diffractometer, ASRM Bulletin No. 228 (1958).Google Scholar
28.Gibbs, R. J., Am. Mineral, 50, 741 (1965).Google Scholar
29.Shaw, H. G., Clay Mineral, 9, 349 (1972).CrossRefGoogle Scholar
30.Drever, J. I., Am. Mineral, 58, 553 (1973).Google Scholar
31.Birks, L. S., Fatemi, M., Gilfrich, J. V. and Johnson, E. T., “Quantitative Analysis of Airborne Asbestos by X-Ray Diffraction”, Naval Research Laboratory NRL Report 7874 (1975).Google Scholar
32.Fatemi, M., Johnson, E. T., Witlock, L. L., Birks, L. S. and Gilfrich, J. V., “X-Ray Analysis of Airborne Asbestos, Interim Report: Sample Preparation. Environmental Protection Agency EPA-600/2-77-O62 (1976).Google Scholar
33.MacGillavary, C. H., Rieck, G. D. and Lonsdale, K., Editors, International Tables for X-Ray Crystallography, Vol. III, Physical and Chemical Tables, The Kynoch Press, Birmingham, England (1962).Google Scholar
34.Chang, F. H., J. Appl. Cryst., 7, 526 (1974).CrossRefGoogle Scholar
35.Davis, B. L. and Johnson, L. R., Adv. in X-Ray Analysis, 25, 295(1982).Google Scholar
36.Schreiner, W. N. and Jenkins, R., Adv. in X-Ray Analysis, 25, 231 (1982).Google Scholar
37.Huang, T. C. and Parrish, W., Adv. in X-Ray Analysis, 25, 213 (1982).Google Scholar
38.Brown, A., Edmonds, J. W. and Foris, C. M., Adv. in X-Ray Analysis, 24, 111 (1981).Google Scholar
39.Brown, A., Adv. in X-Rqy Analysis, 26, 11 (1983).Google Scholar
40.Schreiner, W., Fawcett, T. G., Adv. in X-Ray Analysis, 28, 309 (1985).Google Scholar
41. National Bureau of Standards, Office of Standard Reference Materials, Gaithersburg, MD 20899.Google Scholar
42.Brown, A. and Foris, C. M., Adv. in X-Ray Analysis, 26, 53 (1983).Google Scholar
43.Fawcett, T. G., Newman, R. A., Crowder, C. E., Harris, W. C., Whiting, L. F., Knoll, F. J., Tou, J. C., Caldecourt, V. J. and Smith, W. E., Adv. in X-Ray Analysis, 28 (1985).Google Scholar
44.Koberstein, J. T., Russell, T. P., ACS Polymeric Materials Science and Engineering Preprints, 51, 141 (1984).Google Scholar
45.Frevel, L. K., J. Appl. Cryst., 11 (1978).Google Scholar
46.Post, B. — Laboratory Hints for Crystallographers.Google Scholar
47.Smith, D. K. and Barrett, C. S., Adv. in X-Ray Analysis, 22, 1 (1978).Google Scholar
48.Visser, J. W., 1965 report to ASTM.Google Scholar
49.Frevel, L. K., Roth, W. C., Analytical Chemistry, 54, 677 (1982).CrossRefGoogle Scholar
50.Thomson, A. P., Duthie, D. M. L. and Wilson, M. J., Clay Minerals, 9, 345 (1972).CrossRefGoogle Scholar
51.Hughs, R. and Bohor, B., The American Mineralogist, 55, 1780 (1970).Google Scholar
52.Nel, P. J. and Oberholster, R. E., Evaluation of Three Mounting Techniques for die X-Ray Diffraction Analysis of Clay Minerals.Google Scholar
53.Fawœtt, T. G., Kirchhoff, P. Moore and Newman, R. A., Adv. in X-Rqy Analysis, 26, 171 (1983).Google Scholar
54.Rudman, , Low Temperature Diffraction, Chapter 6, p. 161.Google Scholar
55.Cullity, B. D., Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley Pub., Reading, Mass. (1978).Google Scholar
56.Hauff, P. L., Starkey, H. C., Blackman, P. D. and Pevear, D. R., U.S. Geological Survey Open File Report 82-934, available via die Clay school, P.O. Box 1000, Conifer, Colorado 80433 — see references therein.Google Scholar
57.Smith, D. K., Norelco Reporter, 10, (1963).Google Scholar