Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T05:48:22.808Z Has data issue: false hasContentIssue false

Initial Rietveld characterisation of biological calcifications

Published online by Cambridge University Press:  10 January 2013

K. D. Rogers*
Affiliation:
Cranfield University, Department of Materials Science and Engineering, Shrivenham, Swindon, Wiltshire, United Kingdom SN6 8LA
*
a)Electronic mail: [email protected]

Abstract

X-ray diffraction data has been collected from biological calcific mineral associated with human bone, breast tissue, ureteric calculi, heart valve, and aorta. All the materials are shown to have a nominal calcium hydroxyapatite structure and Rietveld analysis has been performed to extract microstructural information. All refinements achieved a final Rwp value of <10%. The lattice parameter ranges are a=9.375(3)(breast)−9.4316(8)(heartvalve), c=6.866(1)(uretericcalculi) −6.899(1)(rib), and crystallite size range from 40 Å (breast) to 99 Å (ureteric calculi). A correlation between crystallite size estimates from this Rietveld analysis and line profile methods is demonstrated. The results are supported by an infrared study and previous data from alternative techniques. Thus, it is demonstrated that the microstructure of these materials may be characterised by application of the Rietveld method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonar, L. C., Roufosse, A. H., Sabine, W. K., Grynpas, M. D., and Glimcher, M. J.(1983). Calcif. Tissue Int. 35, 202209.CrossRefGoogle Scholar
Caglioti, G., Paoletti, A. and Ricci, F. P. (1958). Nucl. Instrum. Methods, 35, 223228.CrossRefGoogle Scholar
Chickerur, N. S.Tung, M. S.Brown, W. E. (1980). Calcif. Tissue Int. 32, 5562.CrossRefGoogle Scholar
DeKeijser, Th. H.Langford, J. I.Mittemeijer, E. J.Vogels, A. B. (1982). J. Appl. Crystallogr., 15, 308314.CrossRefGoogle Scholar
Delhez, R., Keijser, Th. H. de, and Mittemeijer, E. J. (1982). Fres. Z. Anal. Chem. 312, 1–16.CrossRefGoogle Scholar
Doi, Y., Moriwaki, Y., Aoba, T., Takahashi, J., and Joshin, K. (1982). Calcif. Tissue Int. 34, 178181.CrossRefGoogle Scholar
Dollase, W. A. (1986). J. Appl. Crystallogr., 19, 267272.CrossRefGoogle Scholar
Erts, D., Gathercole, L. J., and Atkins, E. D. T. (1994). J. Mat. Sci. Mat. in Med. 5, 200–206.CrossRefGoogle Scholar
Featherstone, J. D., Mayerm, I., Driessens, F. C., Verbeeck, R. M., and Heijligers, H. J. (1983). Calcif. Tissue Int. 35, 169171.CrossRefGoogle Scholar
Handscin, R. G. and Stern, W. B. (1992). Calcif. Tissue Int. 51, 111120.CrossRefGoogle Scholar
Holden, J. L., Clement, J. G., and Phakey, P. P. (1995). J. Bone and Min. Res. 10(9), 1400–1409.CrossRefGoogle Scholar
Jackson, S. A., Cartwright, A. G., and Lewis, D. (1978). Calcif. Tissue Res. 25, 217222.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1987). Los Alamos National laboratory Report No. LA-UR-86-748.Google Scholar
Legeros, R. Z. (1981). Prog. Crystal Growth Charact. 4, 145.CrossRefGoogle Scholar
Lutterotti, L., Scardi, P., and Maistrelli, P. (1992). J. Appl. Crystallogr., 25, 459462.CrossRefGoogle Scholar
Lutterotti, L., and Scardi, P. (1990). J. Appl. Crystallogr., 23, 246252.CrossRefGoogle Scholar
Martin, V. P. (1994). DRXWin 1.3b—a graphical and analytical tool for powder XRD patterns.Google Scholar
Nandi, R. K., Kuo, H. K., Schlosberg, W., Wissler, G., Cohen, J. B., and Crist, B. (1984). J. Appl. Crystallogr., 17, 2226.CrossRefGoogle Scholar
Nelson, D. G. A. and Featherstone, J. D. B. (1982). Calcif. Tissue Int. 34, S69–S81.Google Scholar
Nounah, A., Lacout, J. L., and Savariault, J. M. (1992). J. Alloys Compd., 188, 141146.CrossRefGoogle Scholar
Pleshko, N., Boskey, A., and Mendelsohn, R. (1991). Biophys. J., 60, 786793.CrossRefGoogle Scholar
Powder Diffraction File (1989). Newtown Square, PA.: International Centre for Diffraction Data.Google Scholar
Pritzkow, W. and Rentsch, H. (1985). Cryst. Res. Technol. 20, 957960.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Crystallogr., 2, 6567.CrossRefGoogle Scholar
Sasaki, N., Matsushima, N., Ikawa, T., Yamamura, H., and Fukuda, A. (1989). J. Biochem. 22(2), 157164.Google Scholar
Vetter, U., Weis, M. A., Morike, M., Eanes, E. D., and Eyre, D. R. (1993). J. Bone & Min. Res. 8(2), 133–137.CrossRefGoogle Scholar
Young, R. A. and Holcomb, D. W. (1982). Calcif. Tissue Int. 34, S17–S32.Google Scholar