Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T23:16:52.975Z Has data issue: false hasContentIssue false

In situ X-ray diffraction study of deformation and shape recovery in the aged U–6.2wt%Nb alloy

Published online by Cambridge University Press:  30 January 2017

Y. Z. Zhang*
Affiliation:
Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 9071-35, Mianyang 621907, China
D. P. Wang
Affiliation:
Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 9071-35, Mianyang 621907, China
W. J. Guan
Affiliation:
Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, China
X. L. Chen
Affiliation:
Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, China
X. L. Wang*
Affiliation:
China Academy of Engineering Physics, Mianyang 621900, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]; [email protected]
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]; [email protected]

Abstract

The present work focuses on the deformation and recovery mechanisms of aged monoclinic U–Nb alloy under tension and load–unload cycle testing using in situ X-ray diffraction (XRD). The U–6.2wt% Nb (U–6.2Nb) alloy was prepared and aged at 200 °C, and then underwent tensile testing followed by the in situ XRD. The experimental results indicate that the change of diffraction peaks can serve to accurately characterize the macroscopic deformation and recovery. Compared with the as-quenched alloy, the aged U–6.2Nb alloy displays different behavior during deformation and subsequent recovery. Phase transformation competes with twin rearrangement to dominate the deformation and recovery between elastic stage and slip stage of the alloy. The lattice plane relationship between α″ and γ° during phase transformation has also been given.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, D. W., Bourke, M. A. M., Dunn, P. S., Field, R. D., Stout, M. G., and Thoma, D. J. (2001). “Uniaxial tensile deformation of uranium 6 wt pct niobium: a neutron diffraction study of deformation twinning,” Metall. Mater. Trans. A 32A, 22192228.Google Scholar
Brown, D. W., Bourke, M. A. M., Field, R. D., Hults, W. L., Teter, D. F., Thoma, D. J., and Vogel, S. C. (2006). “Neutron diffraction study of the deformation mechanisms of the uranium–7 wt.% niobium shape memory alloy,” Mater. Sci. Eng. A 421, 1521.Google Scholar
Carpenter, D. A. (1985). X-ray diffraction study of reversible deformation mechanisms in the aged uranium-6.5 niobium alloy (Y-12 Report).Google Scholar
Carpenter, D. A. and Vandermeer, R. A. (1982). “An X-ray-diffraction study of a martensitic-transformation in uranium alloys,” J. Phys. Colloq. 43-C4, 395.Google Scholar
Carpenter, D. A. and Vandermeer, R. A. (1983). “Study martensitic transformation in U–Nb alloy using X-ray diffraction,” Adv. X-Ray Anal. 26, 307.Google Scholar
Clarke, A. J., Field, R. D., McCabe, R. J., Cady, C. M., Hackenberg, R. E., and Thoma, D. J. (2008). “EBSD and FIB/TEM examination of shape memory effect deformation structures in U–14 at.% Nb,” Acta Mater. 56, 26382648.Google Scholar
Clarke, A. J., Field, R. D., Dickerson, P. O., McCabe, R. J., Swadener, J. G., Hackenberg, R. E., and Thoma, D. J. (2009). “A microcompression study of shape-memory deformationin U–13 at.% Nb,” Scr. Mater. 60, 890892.CrossRefGoogle Scholar
Dubinskiy, S., Prokoshkin, S., Brailovski, V., Inaekyan, K., and Korotitskiy, A. (2014). “In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features,” Mater. Charact. 88, 127142.Google Scholar
Eckelmeyer, K. H., Romig, A. D., and Weirick, L. J. (1984). “The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U–6 wt pct Nb,” Metall. Trans. A 15A, 13191330.CrossRefGoogle Scholar
Field, R. D., Thoma, D. J., Dunn, P. S., Brown, D. W., and Cady, C. M. (2001). “Martensitic structures and deformation twinning in the U–Nb shape-memory alloys,” Philos. Mag. A 81, 16911724.CrossRefGoogle Scholar
Field, R. D., Brown, D. W., and Thoma, D. J. (2005). “Texture development and deformation mechanisms during uniaxial straining of U–Nb shape-memory alloys,” Philos. Mag. 85, 25932609.CrossRefGoogle Scholar
Hsiung, L. L. (2005). Spinodal decomposition and ordering transformation in U-6wt% Nb (LLNL Report UCRL-PROC-214640).Google Scholar
Kelly, A. M., Field, R. D., and Thoma, D. J. (2012). “Metallographic preparation techniques for U–6 wt.%Nb,” J. Nucl. Mater. 429, 118127.Google Scholar
Lopes, D. A., Restivo, T. A. G., and Padilh, A. F. (2013). “Mechanical and thermal behaviour of U–Mo and U–Nb–Zr Alloys,” J. Nucl. Mater. 440, 304309.Google Scholar
McKeown, J. T., Hsiung, L. L., Ryu, H. J., Park, J. M., Turchi, P. E. A., and King, W. E. (2014). “Rapidly solidified U–6 wt%Nb powders for dispersion-type nuclear fuels,” J. Nucl. Mater. 448, 7279.Google Scholar
Sagaradze, V. V., Zuev, Y. N., Bondarchuk, S. V., Svyatov, I. L., Shestakov, A. E., Pecherkina, N. L., Kabanova, I. G., and Klyukin, M. F. (2013). “Structural heredity in the U–6Nb alloy and conditions for its elimination,” Phys. Met. Metall. 114, 299307.Google Scholar
Tupper, C. N., Brown, D. W., Field, R. D., Sisneros, T. A., and Clausen, B. (2012). “Large strain deformation in uranium 6 Wt Pct niobium,” Metall. Mater. Trans. A 43A, 520530.Google Scholar
Vandermeer, R. A. (1980). “Phase transformations in a uranium + 14 at.% niobium alloy,” Acta Metall. 28, 383393.Google Scholar
Vandermeer, R. A., Ogle, J. C., and Snyder, W. B. (1978). “Shape memory effects in a uranium + 14 at. % niobium alloy,” Scr. Mater. 12, 243248.Google Scholar
Vandermeer, R. A., Ogle, J. C., and Northcutt, W. G. (1981). “A phenomenological study of the shape memory effect in polycrystalline uranium–niobium alloys,” Metall. Trans. A 12, 733741.Google Scholar
Volz, H. M., Hackenberg, R. E., Kelly, A. M., Hults, W. L., Lawson, A. C., Field, R. D., Teter, D. F., and Thoma, D. J. (2007). “X-ray diffraction analyses of aged U-Nb alloys,” J. Alloys Compd. 444–445, 217225.Google Scholar
Wang, X. D., Lou, H. B., Ståhl, K., Bednarcik, J., Franz, H., and Jiang, J. Z. (2010). “Tensile behavior of orthorhombic α″-titanium alloy studied by in situ X-ray diffraction,” Mater. Sci. Eng. A 527, 65966600.Google Scholar
Xu, Y., Zhang, S. H., Cheng, M., and Song, H. W. (2012). “In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading,” Scr. Mater. 67, 771774.Google Scholar
Zhang, Y. Z., Wang, X. L., Chen, X. L., and Xiao, D. W. (2015a). “In situ x-ray diffraction study of the tensile deformation of U-5.8Nb alloy,” Rare Metal Mat. Eng. 44, 10941098.Google Scholar
Zhang, Y. Z., Wang, X. L., Xu, Q. Y., and Li, Y. F. (2015b). “X-ray diffraction study of low temperature aging in U-5.8wt.%Nb,” J. Nucl. Mater. 456, 4145.Google Scholar