Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:02:04.829Z Has data issue: false hasContentIssue false

High-energy X-ray applications: current status and new opportunities

Published online by Cambridge University Press:  30 January 2018

Dubravka Šišak Jung*
Affiliation:
DECTRIS Ltd, Täfernweg 1, 5405 Baden-Dättwil, Switzerland
Tilman Donath
Affiliation:
DECTRIS Ltd, Täfernweg 1, 5405 Baden-Dättwil, Switzerland
Oxana Magdysyuk
Affiliation:
Diamond Light Source, Didcot, United Kingdom
Jozef Bednarcik
Affiliation:
Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Characterization of semi and noncrystalline materials, monitoring structural phase transitions in situ, and obtaining structural information together with spatial distribution of the investigated material are only a few applications that hugely benefitted from the combination of high-energy X-rays and modern algorithms for data processing. This work examines the possibility of advancing these applications by shortening the data acquisition and improving the data quality by using the new high-energy PILATUS3 CdTe detector.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Murga, M., Bleuet, P., Leopoittevin, C., Boudet, N., Gabarino, G., Salamat, A., Tucoulou, R., Mezouar, M., and Hodeau, J.-L. (2014). “Diffraction/scattering tomography on multi-phase crystalline/amorphous materials,” Acta Cryst. A70, C139.Google Scholar
Ballabriga, R., Campbell, M., Heijne, E., Llopart, X., Tlustos, L., and Wong, W. (2010). “Medipix3: a 64k pixel detector readout chip working in single photon counting mode with improved spectrometric performance,” Nucl. Instr. Meth. A633, S15S18.Google Scholar
Bednarcik, J. and Liermann, H. P. (2016). “In situ XRD studies of fast kinetics of Fe-based metallic glass,” poster presented at DESY Users’ Meeting, Hamburg.Google Scholar
Bellazzini, A., Brez, A., Spandre, G., Minuti, M., Pinchera, M., Delogu, P., de Ruvo, P. L., and Vincenzi, A. (2015). “PIXIE III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging,” J. Inst. 10, C01032.Google Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B., and Shi, X. (2010). “The MYTHEN detector for X-ray powder diffraction experiments at the Swiss light source,” J. Synch. Rad. 17, 653668.Google Scholar
Billinge, S. J. L. and Kanatzidis, M. G. (2004). “Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions,” Chem. Comm. 7, 749760.CrossRefGoogle Scholar
Bleuet, P., Welcomme, E., Dooryhée, E., Susini, J., Hodeau, J.-L., and Walter, P. (2008). “Probing the structure of heterogeneous diluted materials by diffraction tomography,” Nat. Mater. 7, 468472.Google Scholar
Brönnimann, Ch. and Trüb, P. (2016). “Hybrid pixel photon counting X-Ray detectors for synchrotron radiation,” in “Synchrotron-light Sources and Free-Electron Lasers,” edited by Jaeschke, E. J., Khan, S., Schneider, J. R. and Hastings, J. B., pp. 9951027.Google Scholar
Brönnimann, Ch., Baur, R., Eikenberry, E. F., Fischer, P., Florin, S., Horisberger, R., Lindner, M., Schmitt, B., and Schulze, C. (2002). “A pixel detector for protein crystallography beamline at the SLS,” Nucl. Inst. Meth. Phys. Res. A477, 531535.CrossRefGoogle Scholar
Chupas, P. J., Chapman, K. W., and Lee, P. L. (2007). “Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements,” J. Appl. Cryst. 40, 463470.Google Scholar
Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P., and Billinge, S. J. L. (2003). “Rapid acquisition pair distribution function analysis (RA-PDF),” J. Appl. Cryst. 36, 13421347.Google Scholar
Coelho, A. A. (2007). TOPAS-Academic, version 4.1 (computer software), Coelho Software, Brisbane.Google Scholar
Dinapoli, R., Bergamaschi, A., Henrich, B., Horisberger, R., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B., Shi, X., and Suter, D. (2010). “A new family of pixel detectors for high frame rate X-ray applications,” Nucl. Inst. Meth. Phys. Res. A617, 384386.Google Scholar
Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R., Magdysyuk, O., Vo, N., Hart, M., Connor, L., Humphreys, B., Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster, A., De Maio, N., Basham, M., Yuan, F., and Wanelik, K. (2015). “I12: the joint engineering, environment and procesing (JEEP) beamline at diamond light source,” J. Synch. Rad. 22, 828838.Google Scholar
Dyadkin, V., Pattison, P., Dmitriev, V., and Chernyshov, D. (2016). “A new multipurpose diffractometer PILATUS@SNBL,” J. Synch. Rad. 23, 825829.Google Scholar
Friščić, T., Halasz, I., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A. J., Honkimäki, V., and Dinnebier, R. E. (2013). “Real-time and in situ monitoring of mechanochemical milling reactions,” Nat. Chem. 5, 6673.Google Scholar
Görner, W., Hentschel, M. P., Müller, B. R., Riesemeier, H., Krumrey, M., Ulm, G., Diete, W., Klein, U., and Frahm, R. (2001). “BAMline: the first hard X-ray beamline at BESSY II,” Nucl. Inst. Meth. Phys. Res. A467, 703706.Google Scholar
Harding, G., Kosanetzky, J., and Neitzel, U. (1987). “X-ray diffraction computed tomography,” Med. Phys. 14(4), 515525.Google Scholar
Haverkamp, R. G. and Wallwork, K. S. (2009). “X-ray pair distribution function analysis of nanostructured materials using a Myten detector,” J. Synch. Rad. 16, 849856.Google Scholar
Jacques, S. D. M., Di Michiel, M., Beale, A. M., Sochi, T., O'Brien, M. G., Espinosa-Alonso, L., Weckhuysen, B. M., and Barnes, P. (2011). “Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution,” Angew. Chem. Int. Ed. 50, 1014810152.CrossRefGoogle ScholarPubMed
Jacques, S. D. M., Di Michiel, M., Kimber, S. A. J., Yang, X., Cernik, R. J., Beale, A. M., and Billinge, S. J. L. (2013). “Pair distribution function computed tomography,” Nat. Commun. 4, 17.Google Scholar
Jaeschke, E., Khan, S., Schneider, J. R., and Hastings, J. B. (Eds.) (2016). Synchrotron Light Sources and Free-Electron Lasers (Springer, New York).Google Scholar
Jones, M. E., Fearn, S., Winter, R., Yuan, F., Lennie, A. R., Parker, J. E., Thompson, S. P., and Tang, C. C. (2014). “Dynamic strain propagation in nanoparticulate zirconia refractory,” J. Appl. Cryst. 48, 386392.Google Scholar
Loeliger, T., Brönnimann, Ch., Donath, T., Schneebeli, M., Schnyder, R., and Trüb, P. (2012). “The New PILATUS3 ASIC with Instant Retrigger Capability,” IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), N6-2. 610-615.Google Scholar
Pennicard, D. and Graafsma, H. (2011). “Simulated performance of high-Z detectors with Medipix3 readout,” J. Inst. 6, 6007.Google Scholar
Radicci, V., Commichau, S., donath, T., Rissi, M., Sakhelashvili, T., Schneebeli, M., Traut, S., Trueb, P., Tudosie, G., and Broennimann, Ch. (2014). “First PILATUS3-CdTe detector: calibration and performance,” International Workshop on Radiation Imaging Detectors, Trieste, Italy.Google Scholar
Scardi, P., Billinge, S. J. L., Neder, R., and Cervellino, A. (2016). “Celebrating 100 years of the Debye scattering equation,” Acta Cryst. A72(6), 589590.Google Scholar
Schmitt, B., Brönnimann, Ch., Eikenberry, E. F., Gozzo, F., Hörmann, Ch., Horisberger, R., and Patterson, B. (2003). “Mythen detector system,” Nucl. Inst. Meth. Phys. Res. A501, 267272.Google Scholar
Shen, G., Chow, P., Xiao, Y., Sinogeikin, S., Meng, Y., Yang, W., Liermann, H., Rod, E., Bommannavar, A., and Mao, H. (2008). “HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source,” High Press. Res. 48, 145162.Google Scholar
Stinton, G. W. and Evans, J. S. O. (2006). “Parametric rietveld refinement,” J. Appl. Cryst. 40, 8798.Google Scholar
Thompson, S. P., Parker, J. E., Marchal, J., Potter, J., Birt, A., Yuan, F., Fearn, R. D., Lennie, A. R., Streeta, S. R., and Tang, C. C. (2011). “Fast X-ray powder diffraction on I11 at diamond,” J. Synch. Rad. 18, 637648.Google Scholar
Trueb, P., Dejoie, C., Kobas, M., Pattison, P., Peake, D. J., Radicci, V., Sobott, B. A., Walko, D. A., and Broennimann, C. (2015). “Bunch mode specific rate corrections for PILATUS3 detectors,” J. Synch. Rad. 22(3), 701707.Google Scholar
Vamvakeros, A., Jacques, S. D. M., Middelkoop, V., Di Michiel, M., Egan, C. K., Ismagilov, I. Z., Vaughan, G. B. M., Gallucci, F., van Sint Annaland, M., Shearing, P. R., Cernik, R. J., and Beale, A. M. (2015). “Real-time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane,” Chem. Comm. 64, 1275212755.Google Scholar
Vamvakeros, A., Jacques, S. D. M., Di Michiel, M., Senecal, P., Middelkoop, V., Cernik, R. J., and Beale, A. M. B. (2016). “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485496.Google Scholar
Yang, X., Juhás, P., and Billinge, S. J. L. (2013). “On the estimation of statistical uncertainties on powder diffraction and small angle scattering data from two dimensional detectors,” J. Appl. Cryst. 47, 12731283.Google Scholar
Zambon, P., Christodoulou, C., Donath, T., Radicci, V., Rissi, M., Sakhelashvili, T., Schneebeli, M., Tudosie, G., Trueb, P., and Broennimann, C. (2015). “Characterization of PILATUS3 CdTe and CdZnTe Large-Area Detectors,” International Workshop on Radiation Imaging Detectors, Hamburg, Germany.Google Scholar