Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T17:49:35.091Z Has data issue: false hasContentIssue false

Grazing incidence X-ray diffraction measurement of silver nanoparticles in metal-assisted etching of silicon

Published online by Cambridge University Press:  01 June 2020

Yunhui Tang
Affiliation:
College of Material Sciences and Engineering, Beijing University of Technology, Beijing100124, P. R. China
Bo Wang*
Affiliation:
College of Material Sciences and Engineering, Beijing University of Technology, Beijing100124, P. R. China
Rui Xue
Affiliation:
College of Material Sciences and Engineering, Beijing University of Technology, Beijing100124, P. R. China
Hui Yan
Affiliation:
College of Material Sciences and Engineering, Beijing University of Technology, Beijing100124, P. R. China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Silicon nanowires (SiNWs) were fabricated in a metal-assisted chemical etching method with two steps including dipping silicon wafers in AgNO3/HF solutions and then in H2O2/HF solutions. Grazing incidence X-ray diffraction measurements with a set of incidence angles were carried out on the resulting samples to detect characteristics of silver nanoparticles in the etched silicon. Compared with the uniform size of silver nanoparticles on the surface, the silver nanoparticles in etched silicon were found with size increasing and content decreasing corresponding to the depths. Based on the silver size increasing phenomenon, a detailed supplementary hypothesis about SiNWs formation was proposed about silver disintegration and redeposition in the later stage of silicon etching. For 2, 3, 4, and 8 mM AgNO3 solutions used to study their effect on the SiNWs, it was found that a higher quantity of Ag+ concentration such as 8 mM were not beneficial for producing good quality SiNWs.

Type
Technical Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashrafabadi, S. and Eshghi, H. (2018). “Single-crystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer,” Superlattices Microstruct. 120, 517524.CrossRefGoogle Scholar
Bai, F., Li, M., Song, D., Yu, H., Jiang, B., and Li, Y. (2012). “One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature,” J. Solid State Chem. 196, 596600.CrossRefGoogle Scholar
Behera, A. K., Viswanath, R. N., Lakshmanan, C., Madapu, K. K., Kamruddin, M., and Mathews, T. (2019). “Synthesis, microstructure and visible luminescence properties of vertically aligned lightly doped porous silicon nanowalls,” Microporous Mesoporous Mater. 273, 99106.CrossRefGoogle Scholar
Chiou, A. H., Chien, T. C., Su, C. K., Lin, J. F., and Hsu, C. Y. (2013). “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Curr. Appl. Phys. 13, 717724.CrossRefGoogle Scholar
Cong, L. T., Lam, N. T. N., Giang, N. T., Kien, P. T., Dung, N. D., and Ha, N. N. (2019). “N-type silicon nanowires prepared by silver metal-assisted chemical etching: Fabrication and optical properties,” Mater. Sci. Semicond. Process 90, 198204.CrossRefGoogle Scholar
Dai, H., Sun, J., Li, J. T., Yu, X. X., Zhao, J. F., Fang, H. J., and Zhu, Z. F. (2018). “Ag nanowire @ nano-groove fabrication for enhanced light harvesting through silicon chemical etching,” Trans. Indian Inst. Met. 71(7), 16811686.CrossRefGoogle Scholar
Dutta, P. (2000). “Grazing incidence X-ray diffraction,” Curr. Sci. 78, 14781483.Google Scholar
Fang, H., Wu, Y., Zhao, J., and Zhu, J. (2006). “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17, 37683774.CrossRefGoogle Scholar
Fellahi, Q., Hadjersi, T., Maamache, M., Bouanik, S., and Manseri, A. (2010). “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching,” Appl. Surf. Sci. 257, 591595.CrossRefGoogle Scholar
Güder, F., Yang, Y., Küçükbayrak, U. M., and Zacharias, M. (2013). “Tracing the migration history of metal catalysts in metalassisted chemically etched silicon,” ACS Nano 7, 15831590.CrossRefGoogle ScholarPubMed
Hamdi, A., Amri, C., Ouertani, R., and Ezzaouia, H. (2017). “Effect of etching time on morphological, optical and structural properties of silicon nanowire arrays etched on multi-crystalline silicon wafer,” J. Mater. Sci.: Mater. Electron. 28, 48074813.Google Scholar
Huang, Z., Greyer, N., Liu, L., Li, M., and Zhong, P. (2010). “Metal-assisted electrochemical etching of silicon,” Nanotechnology 21(46), 465301.CrossRefGoogle ScholarPubMed
Kumar, J. and Ingole, S. (2018). “Effect of silicon conductivity and HF/H2O2 ratio on morphology of silicon nanostructures obtained via metal-assisted chemical etching,” J. Electron. Mater. 47(2), doi:10.1007/s11664-017-5964-0.CrossRefGoogle Scholar
Kumar, D., Srivastava, S. K., Singh, P. K., Sood, K. N., Singh, V. N., Dilawar, N., and Husain, M. (2010). “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart Res. 12, 22672276.CrossRefGoogle Scholar
Lajvardi, M., Eshghi, H., Ghazi, M. E., Izadifard, M., and Goodarzi, A. (2015). “Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching,” Mater. Sci. Semicond. Process 40, 556563.CrossRefGoogle Scholar
Li, C. L., Cui, D. F., Zhou, Y. L., Lu, H. B., Chen, Z. H., Zhang, D. F., and Wu, F. (1998). “Asymmetric rocking curve study of the crystal structure orientations for BaTiO3 thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 136, 173177.CrossRefGoogle Scholar
Lin, L. H., Guo, S. P., Sun, X. Z., Feng, J. Y., and Wang, Y. (2010). “Synthesis and photoluminescence properties of porous silicon nanowire arrays,” Nanoscale Res. Lett. 5, 18221828.CrossRefGoogle ScholarPubMed
Liu, Y. S., Ji, G. B., Wang, J. Y., Liang, X. Q., Zuo, Z. W., and Shi, Y. (2012). “Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration,” Nanoscale Res. Lett. 7, 663.CrossRefGoogle ScholarPubMed
Liu, K., Qu, S. C., Zhang, X. H., and Wang, Z. G. (2013). “Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching,” J. Mater. Sci. 48, 17551762.CrossRefGoogle Scholar
McSweeney, W., Geaney, H., and O'Dwyer, C. (2015). “Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes,” Nano Res. 8(5), 13951442.CrossRefGoogle Scholar
Meng, X. M., Zhou, A., Wang, B., Chen, Y., Tang, Y. H., and Yan, H. (2016). “Stable superwetting surface prepared with tilted silicon nanowires,” Nano-Micro Lett. 8(4), 388393.CrossRefGoogle ScholarPubMed
Moumni, B. and Jaballah, A. B. (2017). “Correlation between oxidant concentrations, morphological aspects and etching kinetics of silicon nanowires during silver-assist electroless etching,” Appl. Surf. Sci. 425, 17.CrossRefGoogle Scholar
Peng, K. Q., Yan, Y. J., Gao, S. P., and Zhu, J. (2002). “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Adv. Mater. 14, 1164.3.0.CO;2-E>CrossRefGoogle Scholar
Peng, K., Yan, Y., Gao, S., and Zhu, J. (2003). “Dendrite-assited growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater. 13(2), 127–32.CrossRefGoogle Scholar
Peng, K., Hu, J., Yan, Y., Wu, Y., Fang, H., and Xu, Y. (2006). “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16(3), 387–94.CrossRefGoogle Scholar
Peng, K. Q., Zhang, M. L., Lu, A. J., Wong, N. B., Zhang, R. Q., and Lee, S. T. (2008). “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18, 110.CrossRefGoogle Scholar
Qiu, T., Wu, X. L., Mei, Y. F., Wan, G. J., Chu, P. K., and Siu, G. G. (2005). “From Si nanotubes to nanowires: synthesis, characterization, and self-assembly,” J. Cryst. Growth 277, 143148.CrossRefGoogle Scholar
Qiu, T., Wu, X. L., Siu, G. G., and Chu, P. K. (2006). “Intergrowth growth mechanism of silicon nanowires and silver dendrites,” J. Electron Mater. 35, 18791884.CrossRefGoogle Scholar
Qu, Y., Liao, L., Li, Y., Zhang, H., Huang, Y., and Duan, X. (2009). “Electrically conductive and optically active porous silicon nanowires,” Nano Lett. 9, 45394543.CrossRefGoogle ScholarPubMed
Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., and Mariño, A. (2015). “AuN films – structure and chemical binding,” Surf. Interface Anal. 47, 701.CrossRefGoogle Scholar
Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., and Caro-Lopera, F. J. (2017). “Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition,” Surf. Coat. Technol. 309, 249257.CrossRefGoogle Scholar
Salhi, B., Hossain, M. K., and Al-Sulaiman, F. (2018). “Wet-chemically etched silicon nanowire: effect of etching parameters on the morphology and optical characterizations,” Sol. Energy 161, 180186.CrossRefGoogle Scholar
Tang, J., Shi, J., Zhou, L., and Ma, Z. (2011). “Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching,” Nano-Micro Lett. 3, 129134.CrossRefGoogle Scholar
Tang, Y. H., Wang, B., Li, H. Y., and He, M. S. (2019). “Measurement of SnO2 nanoparticles coating on titanium dioxide nanotube arrays using grazing incidence X-ray diffraction,” in Characterization of Minerals, Metals, and Materials, edited by Li, Bowen, Li, Jian, Ikhmayies, Shadia, Zhang, Mingming, Eren Kalay, Yunus, Carpenter, John S., Hwang, Jiann-Yang, Monteiro, Sergio, Bai, Chenguang, Escobedo-Diaz, Huan P., Russo Spena, Pasquale and Goswami, Ramasis (Springer International Publishing AG, Switzerland), pp. 703711.Google Scholar
Tracy, C. L., Chen, C. H., Park, S., Davisson, M. L., and Ewing, R. C. (2018). “Measurement of UO2 surface oxidation using grazing-incidence X-ray diffraction: implications for nuclear forensics,” J. Nucl. Mater. 502, 6875.CrossRefGoogle Scholar
Venkatesan, R., Arivalagan, M. K., Venkatachalapathy, V., Pearce, J. M., and Mayandi, J. (2018). “Effects of silver catalyst concentration in metal assisted chemical etching of silicon,” Mater. Lett. 221, 206210.CrossRefGoogle Scholar
Zhong, X., Qu, Y. Q., Lin, Y. C., Liao, L., and Duan, X. F. (2011). “Unveiling the formation pathway of single crystalline porous silicon nanowires,” ACS Appl. Mater. Inter. 3, 261270.CrossRefGoogle ScholarPubMed