Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:34:13.770Z Has data issue: false hasContentIssue false

Full spectrum calculations of EDXRF spectra

Published online by Cambridge University Press:  01 March 2012

W. T. Elam
Affiliation:
EDAX, Inc., Mahwah, New Jersey 70430
Bob Shen
Affiliation:
EDAX, Inc., Mahwah, New Jersey 70430
Bruce Scruggs
Affiliation:
EDAX, Inc., Mahwah, New Jersey 70430
Joseph Nicolosi
Affiliation:
EDAX, Inc., Mahwah, New Jersey 70430

Abstract

Rapid and accurate methods are becoming available to calculate all of the relevant physical effects that contribute to an energy-dispersive X-ray fluorescence (EDXRF) spectrum, rather than just the characteristic line intensities given by the traditional fundamental parameters method. To evaluate the utility of such methods, we have calculated the full spectra of several compounds covering a wide range of compositions. The calculated spectra are compared directly with measured spectra. They include scattering of the X-ray tube lines and continuum, the Compton profile, and the detector response. Our results indicate that it is now possible to compute the full spectrum from an EDXRF system with very good accuracy.

Type
X-Ray Fluorescence and Related Techniques
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Can, C. (2003). X-Ray Spectrom. XRSPAX 10.1002/xrs.650 32, 280284.CrossRefGoogle Scholar
Carlsson, G. A., Carlsson, C. A., Berggren, K.-F., and Ribberfors, R. (1982). Med. Phys. MPHYA6 10.1118/1.595195 9, 868879.CrossRefGoogle Scholar
Ebel, H. (1999). X-Ray Spectrom. XRSPAX 10.1002/(SICI)1097-4539(199907/08)28:4<255::AID-XRS347>3.0.CO;2-Y 28, 255266.3.0.CO;2-Y>CrossRef3.0.CO;2-Y28,+255–266.>Google Scholar
Elam, W. T., Ravel, B. D., and Sieber, J. R. (2002). Radiat. Phys. Chem. RPCHDM 63, 121128.CrossRefGoogle Scholar
Elam, W. T., Shen, R. B., Scruggs, B., and Nicolosi, J. (2004). Adv. X-ray Anal. AXRAAA 47, 104109.Google Scholar
Finkelshtein, A. L. and Pavlova, T. O. (1999). X-Ray Spectrom. XRSPAX 10.1002/(SICI)1097-4539(199901/02)28:1<27::AID-XRS302>3.0.CO;2-R 28, 2732.3.0.CO;2-R>CrossRef3.0.CO;2-R28,+27–32.>Google Scholar
Kissel, L. (2000). Radiat. Phys. Chem. RPCHDM 10.1016/S0969-806X(00)00290-5 59, 185200.CrossRefGoogle Scholar
Lábár, J. L. (1987). X-Ray Spectrom. XRSPAX 10.1002/xrs.1300160108 16, 3336.CrossRefGoogle Scholar
Lowe, B. G. (2000). Nucl. Instrum. Methods Phys. Res. A NIMAER 439, 247261.CrossRefGoogle Scholar
Papp, T., Campbell, J. L., Varga, D., and Kalinka, G.. (1998). Nucl. Instrum. Methods Phys. Res. A NIMAER 10.1016/S0168-9002(98)00339-8 412, 109122.CrossRefGoogle Scholar
Scholze, F. and Procop, M. (2001). X-Ray Spectrom. XRSPAX 10.1002/xrs.472 30, 6976.CrossRefGoogle Scholar
Shiraiwa, T. and Fujino, N. (1966). Jpn. J. Appl. Phys., Part 1 JAPNDE 5, 886899.CrossRefGoogle Scholar
Tertian, R. and Claisse, F. (1982). Principles of Quantitative X-ray Fluorescence Analysis (Heyden and Sons, London).Google Scholar
Tirao, G. and Stutz, G. (2003). X-Ray Spectrom. XRSPAX 32, 1324.CrossRefGoogle Scholar
Van Espen, P. (2002). “Spectrum Evaluation,” Chapter 4 in Handbook of X-ray Spectrometry, 2nd Ed., edited by Van Grieken, René E. and Markowicz, Andrzej A. (Marcel Dekker: New York), Chap. 4, pp. 239339.Google Scholar