Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-06T08:11:34.083Z Has data issue: false hasContentIssue false

FINDS: an ImageJ script for rapid non-matrix diffraction spot identification in selected area electron diffraction patterns

Published online by Cambridge University Press:  16 October 2024

Thomas E. Weirich*
Affiliation:
Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Aachen, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Phase characterization with selected area electron diffraction (SAED) represents a significant challenge when the pattern contains a substantial number of diffraction spots arranged in concentric but incomplete rings. This is a common situation when the crystallites are neither large enough to form a single crystal pattern nor sufficiently small and numerous to form continuous Debye-Scherrer rings. In such circumstances, it is often extremely difficult to distinguish between reflections belonging to a specific phase or to identify reflections that originate from secondary phases. To facilitate the process of phase identification for these kinds of multiphase samples, a macro script with the recursive acronym FINDS (FINDS Identifies Non-matrix Diffraction Spots) was developed on the ImageJ/FIJI platform. The program allows the user to mark diffraction spots of known phases by superimposed rings, making it easy to identify and address additional reflections between them. In addition to the full functionality of calculating and plotting the diffraction ring patterns of the known phases in different styles and colors, FINDS also provides tools for locating spot positions and determining the corresponding d-values of the reflections of interest. The effectiveness of this approach and of the developed program in assisting the process of phase identification with SAED patterns of multiphase samples is demonstrated by two representative examples. The macro code of FINDS is published under GNU General Public License v3.0 or later at https://doi.org/10.5281/zenodo.13748483.

Type
Technical Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A. L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., and Honeyman, T.. 2022. “Introducing the FAIR Principles for Research Software.” Scientific Data 9: 622. doi:10.1038/s41597-022-01710-x.CrossRefGoogle ScholarPubMed
Carr, M. J., Chambers, W. F., Melgaard, D., Himes, V. L., Stalick, J. K., and Mighell, A. D.. 1989. “NIST/Sandia/ICDD Electron Diffraction Database: A Database for Phase Identification by Electron Diffraction.” Journal of Research of the National Institute of Standards and Technology 94 (1): 1520. doi:10.6028/jres.094.003.Google ScholarPubMed
Ferreira, F., and Ehrenfeuchter, N.. 2022. “tferr/IJ-Guide: IJ User Guide – ImageJ 1.46p (1.46p)”. doi:10.5281/zenodo.7179722.CrossRefGoogle Scholar
Ferrell, R. E. Jr, and Paulson, G. G.. 1977. “Practical Limitations of Selected Area Electron Diffraction Techniques for Identifying Mineral Particles.” Micron (1969) 8 (1–2): 4755.CrossRefGoogle Scholar
Göpfert, L., Schoenen, M., Buhl, E. M., Weirich, T. E., Schmitz-Rode, T., and Slabu, I.. 2024. “A Modularly Built, Scalable, and Continuous Millifluidic Process Enabling the Synthesis of Magnetic Nanoparticles Tailored for Biomedical Applications.” Chemical Engineering Journal (submitted).Google Scholar
Holland, T. J. B., and Redfern, S. A. T.. 1997. “UNITCELL: A Nonlinear Least-Squares Program for Cell-Parameter Refinement and Implementing Regression and Deletion Diagnostics.” Journal of Applied Crystallography 30 (1): 84. doi:10.1107/S0021889896011673.CrossRefGoogle Scholar
Kabekkodu, S., Dosen, A., and Blanton, T.. 2024. “PDF-5+: A Comprehensive Powder Diffraction File™ for Materials Characterization.” Powder Diffraction 39 (2): 4759. doi:10.1017/S0885715624000150.CrossRefGoogle Scholar
Lábár, J. 2002. “A Tool to Help Phase Identification from Electron Diffraction Powder Patterns.” Microscopy and Analysis 1 (January 2002): 2123. https://analyticalscience.wiley.com/content/article-do/tool-help-phase-identification-electron-diffraction-powder-patterns.Google Scholar
Li, X.-Z. 2012. “QPCED2.0: A Computer Program for the Processing and Quantification of Polycrystalline Electron Diffraction Patterns.” Journal of Applied Crystallography 45: 862–68. 10.1107/S0021889812027173.CrossRefGoogle Scholar
Lyman, C. E., and Carr, M. J.. 1993. Identification of Unknowns." In Electron Diffraction Techniques (Vol. 2, pp. 373417) (IUCr Monographs on Crystallography No. 4.) edited by Cowley, J.. Oxford University Press, Chapter 5.Google Scholar
McCaffrey, J. 2005. “Easy Guide to Calibrating TEM's and STEM's.” Microscopy Today 13 (4): 2835. doi:10.1017/S1551929500053633.CrossRefGoogle Scholar
Phillips, R. 1960. “Selected-Area Diffraction in the Electron Microscope.” British Journal of Applied Physics 11: 504–6. doi:10.1088/0508-3443/11/11/305.CrossRefGoogle Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., et al. 2012. “Fiji: An Open-Source Platform for Biological-Image Analysis.” Nature Methods 9: 676–82. doi:10.1038/nmeth.2019.CrossRefGoogle ScholarPubMed
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9 (7): 671–75. doi:10.1038/nmeth.2089.CrossRefGoogle ScholarPubMed
Shi, H., Luo, M., and Wang, W.. 2019. “ElectronDiffraction Tools, a DigitalMicrograph Package for Electron Diffraction Analysis.” Computer Physics Communications 243: 166–73. doi:10.1016/j.cpc.2019.04.012.CrossRefGoogle Scholar
Walck, S. D. 2020. “Recipes for Consistent Selected Area Electron Diffraction Results: Part 3: Electron Diffraction Analysis Software.” Microscopy Today 28 (4): 4653. doi:10.1017/S1551929520001066.CrossRefGoogle Scholar
Weirich, T. E. 2024. FINDS: an ImageJ Script for Rapid non-Matrix Diffraction Spot Identification in Selected Area Electron Diffraction Patterns. Zenodo. doi:10.5281/zenodo.13748483.Google Scholar