Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T19:04:27.251Z Has data issue: false hasContentIssue false

Experimental electron density distribution of KZnB3O6 constructed by maximum-entropy method

Published online by Cambridge University Press:  08 February 2024

Qi Li
Affiliation:
The Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Yi Huang
Affiliation:
State Key Laboratory of Silicon Materials, Department of Material Science and Engineering, ZheJiang University, Yuhangtang Road No.866, Xihu District, Hangzhou 310058, China
Yanfang Lou
Affiliation:
The Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Munan Hao
Affiliation:
The Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Shifeng Jin*
Affiliation:
The Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The dynamic charge density of KZnB3O6, which contains edge-sharing BO4 units, has been characterized using laboratory and synchrotron X-ray diffraction techniques. The experimental electron density distribution (EDD) was constructed using the maximum-entropy method (MEM) from single crystal diffraction data obtained at 81 and 298 K. Additionally, MEM-based pattern fitting (MPF) method was employed to refine the synchrotron powder diffraction data obtained at 100 K. Both the room-temperature single crystal diffraction data and the cryogenic synchrotron powder diffraction data reveal an intriguing phenomenon: the edge-shared B2O2 ring exhibits a significant charge density accumulation between the O atoms. Further analysis of high-quality single crystal diffraction data collected at 81 K, with both high resolution and large signal-to-noise ratio, reveals no direct O–O bonding within the B2O2 ring. The experimental EDD of KZnB3O6 obtained aligns with the results obtained from ab-initio calculations. Our work underscores the importance of obtaining high-quality experimental data to accurately determine EDDs.

Type
Technical Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Those authors contribute equally.

References

REFERENCES

Delley, B. 2000. “From Molecules to Solids with the DMol3 Approach.” Journal of Chemical Physics 113 (18): 7756–64. doi:10.1063/1.1316015.CrossRefGoogle Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H.. 2009. “OLEX2: A Complete Structure Solution, Refinement and Analysis Program.” Journal of Applied Crystallography 42 (2): 339–41. doi:10.1107/S0021889808042726.CrossRefGoogle Scholar
George, J., Waroquiers, D., Di Stefano, D., Petretto, G., Rignanese, G.-M., and Hautier, G.. 2020. “The Limited Predictive Power of the Pauling Rules.” Angewandte Chemie 132 (19): 7639–45. doi:10.1002/ange.202000829.CrossRefGoogle Scholar
He, M., Chen, X., Okudera, H., and Simon, A.. 2005. “(K1-xNax)2Al2B2O7 with 0≤ X< 0.6: A Promising Nonlinear Optical Crystal.” Chemistry of Materials 17 (8): 2193–96.CrossRefGoogle Scholar
Huppertz, H., and von der Eltz, B.. 2002. “Multianvil High-Pressure Synthesis of Dy4B6O15: The First Oxoborate with Edge-Sharing BO4 Tetrahedra.” Journal of the American Chemical Society 124 (32): 9376–77. doi:10.1021/ja017691z.CrossRefGoogle Scholar
Izumi, F. 2004. “Beyond the Ability of Rietveld Analysis: MEM-Based Pattern Fitting.” Solid State Ionics. Proceedings of the Fifteenth International Symposium on the Reactivity of Solids 172 (1): 16. doi:10.1016/j.ssi.2004.04.023.CrossRefGoogle Scholar
Izumi, F., and Momma, K.. 2007. “Three-Dimensional Visualization in Powder Diffraction.” Solid State Phenomena 130 (December): 1520. doi:https://doi.org/10.4028/www.scientific.net/SSP.130.15.CrossRefGoogle Scholar
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., et al. 2013. “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation.” APL Materials 1 (1): 011002. doi:10.1063/1.4812323.CrossRefGoogle Scholar
Jin, S., Cai, G., Wang, W., He, M., Wang, S., and Chen, X.. 2010. “Stable Oxoborate with Edge-Sharing BO4 Tetrahedra Synthesized under Ambient Pressure.” Angewandte Chemie International Edition 49 (29): 4967–70. doi:10.1002/anie.200907075.CrossRefGoogle ScholarPubMed
Lou, Y., Li, D., Li, Z., Jin, S., and Chen, X.. 2015a. “Unidirectional Thermal Expansion in Edge-Sharing BO4 Tetrahedra Contained KZnB3O6.” Scientific Reports 5 (1): 10996.CrossRefGoogle ScholarPubMed
Lou, Y., Li, D., Li, Z., Zhang, H., Jin, S., and Chen, X.. 2015b. “Unidirectional Thermal Expansion in KZnB3O6: Role of Alkali Metals.” Dalton Transactions 44 (46): 19763–67.CrossRefGoogle ScholarPubMed
Momma, K., and Izumi, F.. 2008. “VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis.” Journal of Applied Crystallography 41 (3): 653–58. doi:10.1107/S0021889808012016.CrossRefGoogle Scholar
Momma, K., Ikeda, T., Belik, A. A., and Izumi, F.. 2013. “Dysnomia, a Computer Program for Maximum-Entropy Method (MEM) Analysis and Its Performance in the MEM-Based Pattern Fitting.” Powder Diffraction 28 (3): 184–93. doi:10.1017/S088571561300002X.CrossRefGoogle Scholar
Mutailipu, M., Poeppelmeier, K. R., and Pan, S.. 2020. “Borates: A Rich Source for Optical Materials.” Chemical Reviews 121 (3): 11301202.CrossRefGoogle ScholarPubMed
Netzel, J. 2008. Accurate Charge Densities of Amino Acids and Peptides by the Maximum Entropy Method. Bayreuth, Bavaria, Southeastern Germany: Universitaet Bayreuth (Germany).Google Scholar
Pauling, L. 1929. “The Principles Determining the Structure of Complex Ionic Crystals.” Journal of the American Chemical Society 51 (1–4): 1010–26. doi:10.1021/ja01379a006.CrossRefGoogle Scholar
Rietveld, H. M. 1967. “Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement.” Acta Crystallographica 22 (1): 151–52. doi:10.1107/S0365110X67000234.CrossRefGoogle Scholar
Ross, V. F., & Edwards, J. O.. 1967. “The Chemistry of Boron and Its Compounds.” The Chemistry of Boron and Its Compounds, by Earl L. Muetterties, 155–207.Google Scholar
Sheldrick, G. M. 2008. “A Short History of SHELX.” Acta Crystallographica Section A Foundations of Crystallography 64 (1): 112–22. doi:10.1107/S0108767307043930.CrossRefGoogle Scholar
Smaalen, S. V., Palatinus, L., and Schneider, M.. 2003. “The Maximum-Entropy Method in Superspace.” Acta Crystallographica Section A 59 (5): 459–69. doi:10.1107/S010876730301434X.CrossRefGoogle ScholarPubMed
Takata, M., Nishibori, E., and Sakata, M.. 2001. “Charge Density Studies Utilizing Powder Diffraction and MEM. Exploring of High Tc Superconductors, C60 Superconductors and Manganites.” Zeitschrift Für Kristallographie – Crystalline Materials 216 (2): 7186. doi:10.1524/zkri.216.2.71.20335.CrossRefGoogle Scholar
Wang, G., and Chen, X.. 2010. “Single-Crystal Growth: From New Borates to Industrial Semiconductors.” Physica Status Solidi (a) 207 (12): 2757–68.CrossRefGoogle Scholar
Wu, L., Chen, X. L., Xu, Y. P., and Sun, Y. P.. 2006. “Structure Determination and Relative Properties of Novel Noncentrosymmetric Borates MM‘4(BO3)3 (M=Na, M‘=Ca and M=K, M‘=Ca, Sr).” Inorganic Chemistry 45 (7): 3042–47.CrossRefGoogle Scholar
Wu, Y., Yao, J.-Y., Zhang, J.-X., Fu, P.-Z., and Wu, Y.-C.. 2010. “Potassium Zinc Borate, KZnB3O6.” Acta Crystallographica Section E 66 (5): i45. doi:10.1107/S1600536810015175.CrossRefGoogle ScholarPubMed
Xu, Z., Liu, X., Deng, D., Wu, Q., Wu, L.-a., Wu, B., Lin, S., Lin, B., Chen, C., and Wang, P.. 1995. “Multiwavelength Optical Parametric Amplification with Angle-Tuned Lithium Triborate.” JOSA B 12 (11): 2222–28.CrossRefGoogle Scholar
Yang, L., Fan, W., Li, Y., Sun, H., Wei, L., Cheng, X., and Zhao, X.. 2012. “Theoretical Insight into the Structural Stability of KZnB3O6 Polymorphs with Different BOx Polyhedral Networks.” Inorganic Chemistry 51 (12): 6762–70. doi:10.1021/ic300469s.CrossRefGoogle ScholarPubMed