Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:48:37.076Z Has data issue: false hasContentIssue false

Evolution in the structure of akaganeite and hematite during hydrothermal growth: an in situ synchrotron X-ray diffraction analysis

Published online by Cambridge University Press:  10 September 2018

Kristina M. Peterson*
Affiliation:
Lyell Centre, Heriot Watt University, Edinburgh, UK
Peter J. Heaney
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802
Jeffrey E. Post
Affiliation:
Department of Mineral Sciences, Smithsonian Institution, Washington, District of Columbia 20560-0119
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Synchrotron X-ray diffraction was used to monitor the hydrothermal precipitation of akaganeite (β-FeOOH) and its transformation to hematite (Fe2O3) in situ. Akaganeite was the first phase to form and hematite was the final phase in our experiments with temperatures between 150 and 200 °C. Akaganeite was the only phase that formed at 100 °C. Rietveld analyses revealed that the akaganeite unit-cell volume contracted until the onset of dissolution, and subsequently expanded. This reversal at the onset of dissolution was associated with a substantial and rapid increase in occupancy of the Cl site, perhaps by OH or Fe3+. Rietveld analyses supported the incipient formation of an OH-rich, Fe-deficient hematite phase in experiments between 150 and 200 °C. The inferred H concentrations of the first crystals were consistent with “hydrohematite.” With continued crystal growth, the Fe occupancies increased. Contraction in both a- and c-axes signaled the loss of hydroxyl groups and formation of a nearly stoichiometric hematite.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, I. (2012). “New generation adsorbents for water treatment,” Chem. Rev. 112, 50735091.Google Scholar
Bailey, J. K., Brinker, C. J., and Mecartney, M. L. (1993). “Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions,” J. Colloid Interface Sci. 157, 113.Google Scholar
Bibi, I., Singh, B., and Silvester, E. (2011). “Akaganéite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia,” Geochim. Cosmochim. Acta 75, 64296438.Google Scholar
Blake, R. L., Hessevick, R. E., Zoltai, T., and Finger, L. W. (1966). “Refinement of the hematite structure,” Am. Mineral. 51, 123129.Google Scholar
Bland, P. A., Kelley, S. P., Berry, F. J., Cadogan, J. M., and Pillinger, C. T. (1997). “Artificial weathering of the ordinary chondrite Allegan: implications for the presence of Cl as a structural component in akaganeite,” Am. Mineral. 82, 11871197..Google Scholar
Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E. C. (2011). “Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents,” Chem. Mater. 23, 20512061.Google Scholar
Bora, D. K., Braun, A., and Constable, E. C. (2013). “‘In rust we trust.’ Hematite – the prospective inorganic backbone for artificial photosynthesis,” Energy Environ. Sci. 6, 407425.Google Scholar
Boyd, P. W. and Ellwood, M. J. (2010). “The biogeochemical cycle of iron in the ocean,” Nat. Geosci. 3, 675682.Google Scholar
Buchwald, V. F. and Clarke, R. S. J. (1989). “Corrosion of Fe–Ni alloys by Cl-containing akaganéite (beta-FeOOH): the Antarctic meteorite case,” Am. Mineral. 74, 656667.Google Scholar
Burgina, E. B., Kustova, G. N., Isupova, L. A., Tsybulya, S. V., Kryukova, G. N., and Sadykov, V. A. (2000a). “Investigation of the structure of protohematite – metastable phase of ferrum (III) oxide,” J. Mol. Catal. A Chem. 158, 257261.Google Scholar
Burgina, E. B., Kustova, G. N., Tsybulya, S. V., Kryukova, G. N., Litvak, G. S., Isupova, L. A., and Sadykov, V. A. (2000b). “Structure of the metastable modification of iron (III) oxide,” J. Struct. Chem. 41, 396402.Google Scholar
Cai, J., Liu, J., Gao, Z., Navrotsky, A., and Suib, S. L. (2001). “Synthesis and anion exchange of tunnel structure akaganeite,” Chem. Mater. 13, 45954602.Google Scholar
Chambaere, D. G. and De Grave, E. (1984). “A study of the non-stoichiometrical halogen and water content of β-FeOOH,” Phys. Status Solidi A 83, 93102.Google Scholar
Chen, M. L., Shen, L. M., Chen, S., Wang, H., Chen, X. W., and Wang, J. H. (2013) In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy,” J. Mater. Chem. B 1, 25822589.Google Scholar
Cheng, X. L., Jiang, J. S., Jin, C. Y., Lin, C. C., Zeng, Y., and Zhang, Q. H. (2014). “Cauliflower-like α-Fe2O3 microstructures: toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis,” Chem. Eng. J. 236, 139148.Google Scholar
Cornell, R. M. and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).Google Scholar
Dang, M. Z., Rancourt, D. G., Dutrizac, J. E., Lamarche, G., and Provencher, R. (1998). “Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials,” Hyperfine Interact. 117, 271319.Google Scholar
Demopoulos, G. P. (2009). “Aqueous precipitation and crystallization for the production of particulate solids with desired properties,” Hydrometallurgy 96, 199214.Google Scholar
Dutcher, B., Fan, M., Leonard, B., Dyar, M. D., Tang, J., Speicher, E. A., Liu, P., and Zhang, Y. (2011). “Use of nanoporous FeOOH as a catalytic support for NaHCO3 decomposition aimed at reduction of energy requirement of Na2CO3/NaHCO3 based CO2 separation technology,” J. Phys. Chem. C 115, 1553215544.Google Scholar
Ellis, J., Giovanoli, R., and Stumm, W. (1976). “Anion-exchange properties of β-FeOOH,” Chimia 30, 194197.Google Scholar
Fonseca, M. C., Bastos, I. N., Baggio-Saitovitch, E., and Sánchez, D. R. (2012). “Characterization of oxides of stainless steel UNS S30400 formed in offshore environment,” Corros. Sci. 55, 3439.Google Scholar
Fütterer, S., Andrusenko, I., Kolb, U., Hofmeister, W., and Langguth, P. (2013). “Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD),” J. Pharm. Biomed. Anal. 86, 151160.Google Scholar
Gao, X. and Schulze, D. G. (2010a). “Chemical and mineralogical characterization of arsenic, lead, chromium, and cadmium in a metal-contaminated Histosol,” Geoderma 156, 278286.Google Scholar
Gao, X. and Schulze, D. G. (2010b). “Precipitation and transformation of secondary Fe oxyhydroxides in a Histosol impacted by runoff from a lead smelter,” Clays Clay Miner. 58, 377387.Google Scholar
García, K. E., Morales, A. L., Arroyave, C. E., Barrero, C. A., and Cook, D. C. (2003). “Mössbauer characterization of rust obtained in an accelerated corrosion test,” Hyperfine Interact. 148, 177183.Google Scholar
Geng, B., Tao, B., Li, X., and Wei, W. (2012). “Ni2+/surfactant-assisted route to porous α-Fe2O3 nanoarchitectures,” Nanoscale 4, 16711676.Google Scholar
Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., and Mangold, N. (2014). “A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1242777.Google Scholar
Gualtieri, A. F. and Venturelli, P. (1999). “In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction,” Am. Mineral. 84, 895904.Google Scholar
Guo, H. and Barnard, A. S. (2013). “Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability,” J. Mater. Chem. A 1, 2742.Google Scholar
Hamada, S. and Matijević, E. (1982). “Formation of monodispersed colloidal cubic haematite particles in ethanol + water solutions,” J. Chem. Soc. Faraday Trans. 1 78, 21472156.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional detector software: from real detector to idealised image or two-theta scan,” High Press. Res. 14, 235248.Google Scholar
Holm, N. G., Dowler, M. J., Wadsten, T., and Arrhenius, G. (1983). “Β-FeOOH · Cln (akaganéite) and Fe1−xO (wüstite) in hot brine from the Atlantis II Deep (Red Sea) and the uptake of amino acids by synthetic β-FeOOH⋯Cln,” Geochim. Cosmochim. Acta 47, 14651470.Google Scholar
Hou, Y., Wang, D., Yang, X. H., Fang, W. Q., Zhang, B., Wang, H. F., Lu, G. Z., Hu, P., Zhao, H. J., and Yang, H. G. (2013). “Rational screening low-cost counter electrodes for dye-sensitized solar cells,” Nat. Commun. 4, 1583.Google Scholar
Ishikawa, T. and Inouye, K. (1975). “Role of chlorine in β-FeOOH on its thermal change and reactivity to sulfur dioxide,” Bull. Chem. Soc. Jpn. 48, 15801584.Google Scholar
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., and Hunter, K. A. (2005). “Global iron connections between desert dust, ocean biogeochemistry, and climate,” Science 308, 6771.Google Scholar
Kampf, A. R., Mills, S. J., Nestola, F., Ciriotti, M. E., and Kasatkin, A. V. (2013). “Saltonseaite, K3NaMn2+Cl6, the Mn analogue of rinneite from the Salton Sea, California,” Am. Mineral. 98, 231235.Google Scholar
Kandori, K., Tamura, S., and Ishikawa, T. (1994). “Inner structure and properties of diamond-shaped and spherical α-Fe2O3 particles,” Colloid Polym. Sci. 27, 812819.Google Scholar
Keller, P. (1970). “Eigenschaften von (Cl,F,OH)<2Fe8(O,OH)16 und Akaganeite,” Neu. Jb. Mineral. Abh. 113, 2949.Google Scholar
Kou, J. and Varma, R. S. (2013). “Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves,” Nanoscale 5, 86758679.Google Scholar
Kuebler, K. E. (2013). “A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 Martian meteorite using Raman spectroscopy and electron microprobe analyses,” J. Geophys. Res. Planets 118, 803830.Google Scholar
Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., and Sillanpää, M. (2014). “Interaction of inorganic anions with iron-mineral adsorbents in aqueous media – a review,” Adv. Colloid Interface Sci. 203, 1121.Google Scholar
Lammers, K., Murphy, R., Riendeau, A., Smirnov, A., Schoonen, M. A. A., and Strongin, D. R. (2011). “CO2 sequestration through mineral carbonation of iron oxyhydroxides,” Environ. Sci. Technol. 45, 1042210428.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Li, X., Yu, X., He, J., and Xu, Z. (2009). “Controllable fabrication, growth mechanisms, and photocatalytic properties of hematite hollow spindles,” J. Phys. Chem. C 113, 28372845.Google Scholar
Ma, J., Zhang, X., Chen, K., Li, G., and Han, X. (2013). “Morphology-controlled synthesis of hematite hierarchical structures and their lithium storage performances,” J. Mater. Chem. A 1, 55455553.Google Scholar
Mackay, A. L. (1960). “β-ferric oxyhydroxide,” Mineral. Mag. 32, 545557.Google Scholar
Mackay, A. L. (1962). “β-ferric oxyhydroxide – akaganeite,” Mineral. Mag. 33, 270280.Google Scholar
Masa, B., Pulisova, P., Bezdicka, P., Michalkova, E., and Subrt, J. (2012). “Ochre precipitates and acid mine drainage in a mine environment,” Ceram. Silik. 56, 914.Google Scholar
Matijević, E. and Scheiner, P. (1978). “Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride, -nitrate, and -perchlorate solutions,” J. Colloid Interface Sci. 63, 509524.Google Scholar
McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., and Cousin, A. (2014). “Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1244734.Google Scholar
Ming, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., and McAdam, A. C. (2014). “Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars,” Science 343, 1245267.Google Scholar
Peterson, K. M., Heaney, P. H., Post, J. E., and Eng, P. J. (2015). “A refined monoclinic structure for a high-temperature ‘hydrohematite’,” Am. Mineral. 100, 570579.Google Scholar
Peterson, K. M., Heaney, P. H., and Post, J. E. (2016). “A kinetic analysis of the transformation from akaganeite to hematite: an in situ time-resolved X-ray diffraction study,” Chem. Geol. 444, 2736.Google Scholar
Post, J. E. and Buchwald, V. F. (1991). “Crystal structure refinement of akaganeite,” Am. Mineral. 76, 272277.Google Scholar
Post, J. E., Heaney, P. J., Von Dreele, R. B., and Hanson, J. C. (2003a). “Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganeite,” Am. Mineral. 88, 782788.Google Scholar
Post, J. E., Heaney, P. J., and Hanson, J. (2003b). “Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite,” Am. Mineral. 88, 142150.Google Scholar
Rao, X., Su, X., Yang, C., Wang, J., Zhen, X., and Ling, D. (2013). “From spindle-like β-FeOOH nanoparticles to α-Fe2O3 polyhedral crystals: shape evolution, growth mechanism and gas sensing property,” CrystEngComm 15, 72507256.Google Scholar
Reddy, M. V., Subba Rao, G. V., and Chowdari, B. V. R. (2013). “Metal oxides and oxysalts as anode materials for Li ion batteries,” Chem. Rev. 113, 53645457.Google Scholar
Refait, P., Ouahman, R., Forrières, C., and Génin, J. M. R. (1992). “The role of Cl ions in the oxidation of iron artifacts from chlorinated archeological environments,” Hyperfine Interact. 70, 9971000.Google Scholar
Reguer, S., Dillmann, P., and Mirambet, F. (2007). “Buried iron archaeological artefacts: corrosion mechanisms related to the presence of Cl-containing phases,” Corros. Sci. 49, 27262744.Google Scholar
Tabuchi, T., Katayama, Y., Nukuda, T., and Ogumi, Z. (2009a). “β-FeOOH thin film as positive electrode for lithium-ion cells,” J. Power Sources 191, 640643.Google Scholar
Tabuchi, T., Katayama, Y., Nukuda, T., and Ogumi, Z. (2009b). “Surface reaction of β-FeOOH film negative electrode for lithium-ion cells,” J. Power Sources 191, 636639.Google Scholar
Tartaj, P., Morales, M. P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., and Serna, C. J. (2011). “The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting,” Adv. Mater. 23, 52435249.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 14.Google Scholar
Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., and Spanovich, N., MSL Science Team (2014). “Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1243480.Google Scholar
Wang, B., Chen, J. S., and Lou, X. W. D. (2012). “The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid,” J. Mater. Chem. 22, 94669468.Google Scholar
Wang, D., Song, C., Zhao, Y., and Yang, M. (2008). “Synthesis and characterization of monodisperse iron oxides microspheres,” J. Phys. Chem. C 112, 1271012715.Google Scholar
Weiser, H. B. and Milligan, W. O. (1935). “X-ray studies on the hydrous oxides. V. Beta ferric oxide monohydrate,” J. Am. Chem. Soc. 57, 238241.Google Scholar
Wheeler, D. A., Wang, G., Ling, Y., Li, Y., and Zhang, J. Z. (2012). “Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties,” Energy Environ. Sci. 5, 66826702.Google Scholar
Willard, M. A., Kurihara, L. K., Carpenter, E. E., Calvin, S., and Harris, V. G. (2004). “Chemically prepared magnetic nanoparticles,” Int. Mater. Rev. 49, 125170.Google Scholar
Wolska, E. (1981). “The structure of hydrohematite,” Z. Kristallogr. 154, 6975.Google Scholar
Wolska, E. and Schwertmann, U. (1989). “Nonstoichiometric structures during dehydroxylation of goethite,” Z. Kristallogr. 189, 223237.Google Scholar
Yang, S., Xu, Y., Sun, Y., Zhang, G., and Gao, D. (2012). “Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route,” CrystEngComm 14, 79157921.Google Scholar