Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T18:59:40.344Z Has data issue: false hasContentIssue false

Enclosing the functional properties of pyrazolato-based coordination polymers within a structural frame: the role of laboratory X-ray powder diffraction

Published online by Cambridge University Press:  14 November 2013

Simona Galli
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy
Norberto Masciocchi
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy

Abstract

Ab initio X-ray powder diffraction structural analyses from laboratory data have been widely employed in the characterization of coordination polymers not affording single crystals of suitable quality to undergo conventional structural determinations. This is particularly true for coordination polymers built upon strong ligand-to-metal bonds, as those formed by anionic, nitrogen-based heterocycles - pyrazolates, imidazolates, pyrimidinolates and more complex moieties derived therefrom. More than one hundred species belonging to this class have been structurally characterized in the last three decades, affording key, otherwise inaccessible stereochemical and supramolecolar features. This contribution summarizes our most recent experience in the XRPD structural characterization of pyrazolato-based coordination polymers, devoting a special consideration to the methodologies and tricks which allowed us to juxtapose the structural description of these materials to their physico-chemical and, above all, functional properties.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbour, L. J. (2006). “Crystal porosity and the burden of proof,” Chem. Commun. (Cambridge, U. K.) 2006(11) 11631168.CrossRefGoogle Scholar
Batten, S. R., Neville, S. M. and Turner, D. R. (2010). Coordination Polymers: Design, Analysis and Application (Springer, New York).Google Scholar
Choi, H. J., Dincă, M. and Long, J. R. (2008). “Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate),” J. Am. Chem. Soc. 130, 78487850.CrossRefGoogle ScholarPubMed
Choi, H. J., Dincă, M., Dailly, A. and Long, J. R. (2010). “Hydrogen storage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate,” Energy Environ. Sci. 3, 117123.CrossRefGoogle Scholar
Cingolani, A., Galli, S., Masciocchi, N., Pandolfo, L., Pettinari, C. and Sironi, A. (2005). “Sorption-desorption behavior of bispyrazolato-copper(II) 1D coordination polymers,” J. Am. Chem. Soc. 127, 61446145.CrossRefGoogle ScholarPubMed
Coelho, A. (2000). “Whole-profile structure solution from powder diffraction data using simulated annealing,” J. Appl. Cryst. 33, 899908.CrossRefGoogle Scholar
Coelho, A. (2003). “Singular value decomposition,” J. Appl. Crystallogr. 36, 8695.CrossRefGoogle Scholar
Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., Masciocchi, N. and Long, J. R. (2011). “High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites,” Chem. Sci. 2, 13111319.CrossRefGoogle Scholar
Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., Barea, E. and Navarro, J. A. (2012). “Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification,” J. Am. Chem. Soc. 134, 1283012843.CrossRefGoogle ScholarPubMed
Czaja, A. U., Trukhan, N. and Muller, U. (2009). “Industrial applications of metal–organic frameworks,” Chem. Soc. Rev. 38, 12841293.CrossRefGoogle ScholarPubMed
David, W. I. F., Shankland, K., McCusker, L. B. and Bärlocher, Ch. (Eds.) (2006). Structure determination from powder diffraction data (Oxford University Press, Oxford).CrossRefGoogle Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. and Yaghi, O. M. (2002). “Systematic design of pore seize and functionality in isoreticular MOFs and their application in methane storage,” Science 295, 469472.CrossRefGoogle Scholar
Ehlert, M. K., Rettig, S. J., Storr, A. and Trotter, J. (1991). “Metal pyrazolate polymers. 2. Synthesis, structure, and magnetic properties of Cu(4-Cl pyrazolate)2X, Cu(4-Br pyrazolate)2X, Cu(4-Me pyrazolate)2X, Cu(4-H pyrazolate)2X polymers,” Can. J. Chem. 69, 432439.CrossRefGoogle Scholar
Galli, S., Masciocchi, N., Colombo, V., Maspero, A., Palmisano, G., López-Garzón, F. J., Domingo-García, M., Fernández-Morales, I., Barea, E. and Navarro, J. A. R. (2010). “Adsorption of harmful organic vapors by flexible hydrophobic bis-pyrazolate based MOFs,” Chem. Mater. 22, 16641672.CrossRefGoogle Scholar
Givaja, G., Amo-Ochoa, P., Gomez-García, C. J. and Zamora, F. (2012). “Electrical conductive coordination polymers,” Chem. Soc. Rev. 41, 115147.CrossRefGoogle ScholarPubMed
Janiak, C. (2003). “Engineering of coordination polymers towards applications,” Dalton Trans. (14), 27812804.CrossRefGoogle Scholar
Kitagawa, S. and Kawata, S. (2002). “New dimensions of coordination compounds of oxocarbon ligands. Structures and properties,” Coord. Chem. Rev. 224, 1134.CrossRefGoogle Scholar
Kole, G. K., and Vittal, J. J. (2013). “Solid-state reactivity and structural transformations involving coordination polymers,” Chem. Soc. Rev. 42, 17551775.CrossRefGoogle ScholarPubMed
Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., Yuan, D., Zhao, D., Zhuang, W. and Zhou, H.-C. (2009). “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 30423066.CrossRefGoogle Scholar
Kurmoo, M. (2009). “Magnetic metal-organic frameworks,” Chem. Soc. Rev. 38, 13531379.CrossRefGoogle ScholarPubMed
Lee, J.-Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., and Hupp, J. T. (2009). “Metal–organic framework materials as catalysts,” Chem. Soc. Rev. 38, 14501459.CrossRefGoogle ScholarPubMed
Li, J. R., Kuppler, R. J. and Zhou, H. C. (2009). “Selective gas adsorption and separation in metal–organic frameworks,” Chem. Soc. Rev. 38, 14771504.CrossRefGoogle ScholarPubMed
Ma, L. Q., Abney, C. and Lin, W. B. (2009). “Enantioselective catalysis with homochiral metal–organic frameworks,” Chem. Soc. Rev. 38, 12481256.CrossRefGoogle ScholarPubMed
Masciocchi, N., Moret, M., Cairati, P., Sironi, A., Ardizzoia, G. A. and Lamonica, G. (1994). “The multiphase nature of the Cu(pz) and Ag(pz) (Hpz=pyrazole) systems: selective syntheses and ab-initio X-ray powder diffraction structural characterization of copper(I) and silver(I) pyrazolates,” J. Am. Chem. Soc. 116, 76687676.CrossRefGoogle Scholar
Masciocchi, N., Galli, S. and Sironi, A. (2005). “X-ray powder diffraction characterization of polymeric metal diazolates,” Comments Inorg. Chem. 26, 137.CrossRefGoogle Scholar
Masciocchi, N., Galli, S., Alberti, E., Sironi, A., Di Nicola, C., Pettinari, C. and Pandolfo, L. (2006). “Synthesis, solid-state NMR, and X-ray powder diffraction characterization of group 12 coordination polymers, including the first example of a C-mercuriated pyrazole,” Inorg. Chem. 45, 90649074.CrossRefGoogle ScholarPubMed
Masciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., Lamberti, C. and Bordiga, S. (2010). “Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials,” J. Am. Chem. Soc. 132, 79027904.CrossRefGoogle ScholarPubMed
Moulton, B. and Zaworotko, M. J.From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids,” Chem. Rev. 101, 16291658.CrossRefGoogle Scholar
Navarro, J. A. R., Barea, E., Rodríguez-Diéguez, A., Salas, J. M., Ania, C. O., Parra, J. B., Masciocchi, N., Galli, S. and Sironi, A. (2008). J. Am. Chem. Soc. 130, 39783984.CrossRefGoogle Scholar
Pettinari, C., Tăbăcaru, A., Boldog, I., Domasevitch, K. V., Galli, S. and Masciocchi, N. (2012). “Novel coordination frameworks incorporating the 4,4-bipyrazolyl ditopic ligand,” Inorg. Chem. 51, 52355245.CrossRefGoogle ScholarPubMed
Quartapelle Procopio, E., Rojas, S., Padial, N. M., Galli, S., Masciocchi, N., Linares, F., Miguel, D., Oltra, E. J., Navarro, J. A. R. and Barea, E. (2011). “Study of the incorporation and release of the non-conventional half-sandwich ruthenium(II) metallodrug RAPTA-C on a robust MOF,” Chem. Commun. (Cambridge, U. K.) 47, 1175111753.CrossRefGoogle Scholar
Stinton, G. W. and Evans, J. S. O. (2007). “Parametric Rietveld refinement,” J. Appl. Crystallogr. 40, 8795.CrossRefGoogle ScholarPubMed
Tăbăcaru, A., Pettinari, C., Masciocchi, N., Galli, S., Marchetti, F. and Angjellari, M. (2011). “Pro-porous coordination polymers of the 1,4-bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene ligand with late transition metals,” Inorg. Chem. 50, 1150611513.CrossRefGoogle Scholar
Ye, B. H., Tong, M. L. and Chen, X. M. (2005). ‘Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands,’ Coord. Chem. Rev. 249, 545565.CrossRefGoogle Scholar
Young, R. A. (1981). The Rietveld Method, IUCr Monograph N. 5 (Oxford University Press, New York).Google Scholar
Zhang, J.-P. and Kitagawa, S. (2008). “Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3′,5,5'-tetramethyl-4,4'-bipyrazolate,” J. Am. Chem. Soc. 130, 907917.CrossRefGoogle Scholar
Zheng, S.-L. and Chen, X.-M., (2004). “Recent advances in monomeric, multinuclear and polymeric Zn(II) and Cd(II) coordination complexes,” Aust. J. Chem. 57, 703712.CrossRefGoogle Scholar