Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:56:48.324Z Has data issue: false hasContentIssue false

Effects of nanoparticles on phase morphology in thin films of phase-separated diblock copolymers

Published online by Cambridge University Press:  30 January 2017

Dieter Jehnichen*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Doris Pospiech
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Peter Friedel
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Andriy Horechyy
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Andreas Korwitz
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Andreas Janke
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Franziskus Näther
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany Actual Address: Wacker Chemie AG, D-01612, Nünchritz, Germany
Christine M. Papadakis
Affiliation:
Technische Universität München, Physik-Department, James-Franck-Str. 1, D-85748 Garching, Germany
Jan Perlich
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany Actual Address: Continental Reifen Deutschland GmbH, D-30165 Hannover, Germany
Volker Neu
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V., Institut für Metallische Werkstoffe, Helmholtzstr. 20, D-01069 Dresden, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

This study investigates the morphology changes in thin diblock copolymer (DiBCP) films occurring in the interaction with modified nanoparticles (NPs). Magnetite (Fe3O4) and silica (SiOx) were prepared and used. Poly(pentyl methacrylate-b-methyl methacrylate) (PPMA-b-PMMA) (70/30 mol mol−1, hcp cylinders of the PMMA phase) DiBCP were employed to prepare thin films having thicknesses to realize standing cylinders in pure DiBCP films. The investigations aimed at two topics: (1) morphology after controlled incorporation of organo-modified NP (gold, silver, Fe3O4, SiOx) and (2) additional solvent vapour annealing (SVA) with tetrahydrofuran (and chloroform for comparison). The laterally ordered morphology in thin films was examined by GISAXS and atomic force microscopy. Keeping the same type of morphology in nanocomposites, the dimensions of the periodic nanostructure altered depending on type and amount of incorporated NP. It was found that SiOx clusters enlarge the lateral distance of the PMMA cylinders, whereas metallic NPs reduce this parameter. Applying SVA improves the phase separation slightly, whereas lateral distances were kept constant or were reduced a little. Switching of domain orientation upon SVA could not be detected in the presence of NPs located at the polymer/substrate interface.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allia, P., Coisson, M., Tiberto, P., Vinai, F., Knobel, M., Novak, M. A., and Nunes, W. C. (2001). “Granular Cu–Co alloys as interacting superparamagnets”, Phys. Rev. B 64, 144420.Google Scholar
Berezkin, A. V., Papadakis, C. M., and Potemkin, I. I. (2016). “Vertical domain orientation in cylinder-forming diblock copolymer films upon solvent vapor annealing”, Macromolecules 49, 415424.Google Scholar
Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R. (1994). “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system”, J. Chem. Soc., Chem. Commun. 7, 801802.Google Scholar
de Gennes, P.-G. (1970). “Theory of X-ray scattering by liquid macromolecules with heavy atom labels”, J. Phys. France 31, 235238.Google Scholar
Fasolka, M. J., Banerjee, P., Mayes, A. M., Pickett, G. and Balazs, A. C. (2000). “Morphology of ultrathin supported diblock copolymer films: theory and experiment”, Macromolecules 33, 57025712.Google Scholar
Fedors, R. F. (1974). “A method for estimating both the solubility parameter and molar volumes of liquids”, Polym. Eng. Sci. 14, 147154.Google Scholar
Fischer, D., Pospiech, D., Scheler, U., Navarro, R., Messori, M., and Fabbri, P. (2008). “Monitoring of sol–gel synthesis of organic–inorganic hybrids by FTIR transmission FTIOR/ATR, NIR and Raman spectroscopy”, Macromol. Symp. 265, 134143.Google Scholar
Flory, P. J. (1953). Principles of Polymer Chemistry (Cornell University Press, Ithaca).Google Scholar
Gu, X., Gunkel, I., Hexemer, A., Gu, W., and Russell, T. P. (2014). “An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing”, Adv. Mater. 26, 273281.Google Scholar
He, G. (2014). “The effect of modified AuNPs on the morphology and nanostructure orientation of PPMA-b-PMMA block copolymer thin films”, PhD Thesis, Technische Universität Dresden, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154391 Google Scholar
Heiney, P. A. (2008). “Datasqueeze Software – Graphical Tools for X-ray Data Analysis”, http://www.datasqueezesoftware.com Google Scholar
Hetti, M., Wei, Q., Pohl, R., Casperson, R., Bartusch, M., Neu, V., Pospiech, D., and Voit, B. (2016). “Magnetite core–shell nanoparticles in nondestructive flaw detection of polymeric materials”, ACS Appl. Mater. Interfaces 8, 2820828215.Google Scholar
Horechyy, A., Zafeiropoulos, N. E., Nandan, B., Formanek, P., Simon, F., Kiriy, A., and Stamm, M. (2010). “Highly ordered arrays of magnetic nanoparticles prepared via block copolymer assembly”, J. Mater. Chem. 20, 77347741.Google Scholar
Horechyy, A., Nandan, B., Zafeiropoulos, N. E., Jehnichen, D., Göbel, M., Stamm, M., and Pospiech, D. (2014). “Nanoparticle directed domain orientation in thin films of asymmetric block copolymers”, Colloid Polym. Sci. 292, 22492260.Google Scholar
Horvat, A., Lyakhova, K. S., Sevink, G. J. A., Zvelindovsky, A. V., and Magerle, R. (2004). “Phase behavior in thin films of cylinder-forming ABA block copolymers: mesoscale modeling”, J. Chem. Phys. 120, 11171126.Google Scholar
Ijichi, Y. and Hashimoto, T. (1988). “RPA calculation for scattering functions from three-component polymer system in the disordered state”, Polym. Commun. 29, 135138.Google Scholar
Jehnichen, D., Pospiech, D., Keska, R., Ptacek, S., Janke, A., Funari, S. S., Timmann, A., and Papadakis, C. M. (2008). “Analysis of thin nanostructured block copolymer films by GISAXS and AFM”, J. Nanostruct. Polym. Nanocomp. 4, 119128.Google Scholar
Jehnichen, D., Pospiech, D., Ptacek, S., Eckstein, K., Friedel, P., Janke, A., and Papadakis, C. M. (2009). “Nanophase-separated diblock copolymers: structure investigations on PPMA-b-PMMA using X-ray scattering methods”, Z. Kristallogr. Suppl. 30, 485490.Google Scholar
Jehnichen, D., Pospiech, D., Friedel, P., He, G., Zhang, J., Sepe, A., Papadakis, C. M., Taurino, R., and Perlich, J. (2015). “Thin film morphologies of block copolymers with nanoparticles”, Powder Diffr. 30, S1, S16S24.Google Scholar
Keska, R., Pospiech, D., Eckstein, K., Jehnichen, D., Ptacek, S., Häußler, L., Friedel, P., Janke, A., and Voit, B. (2006). “Study of the phase behavior of poly(pentyl methacrylate-b-methyl methacrylate) diblock copolymers”, J. Nanostruct. Polym. Nanocomp. 2, 4352.Google Scholar
Kim, B. J., Bang, J., Hawker, C. J., and Kramer, E. J. (2006). “Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template”, Macromolecules 39, 41084114.Google Scholar
Kim, H.-C., Park, S.-M., and Hinsberg, W. D. (2010). “Block copolymer based nanostructures: materials, processes, and applications to electronics”, Chem. Rev. 110, 146177.Google Scholar
Knoll, A., Magerle, R., and Krausch, G. (2004). “Phase behavior in thin films of cylinder-forming ABA block copolymers: experiments”, J. Chem. Phys. 120, 11051116.CrossRefGoogle ScholarPubMed
Krausch, G. and Magerle, R. (2002). “Nanostructured thin films via self-assembly of block copolymers”, Adv. Mater. 14, 15791583.Google Scholar
Lee, B., Park, I., Yoon, J., Park, S., Kim, J., Kim, K.-W., Chang, T., and Ree, M. (2005). “Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering”, Macromolecules 38, 43114323.Google Scholar
Müller-Buschbaum, P. (2003). “Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films”, Anal. Bioanal. Chem. 376, 310.Google Scholar
Nandan, B., Kuila, B. K., and Stamm, M. (2011). “Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials”, Eur. Polym. J. 47, 584599.Google Scholar
Näther, F. (2010). “Gezielte Anordnung von Nanopartikeln mit Hilfe von Blockcopolymer-Templaten: Herstellung und Eigenschaften von Blockcopolymer-Hybriden”, MSc Thesis, HTW Dresden, Germany.Google Scholar
Pospiech, D., Gottwald, A., Jehnichen, D., Friedel, P., John, A., Harnisch, C., Voigt, D., Khimich, G., and Bilibin, A. Y. (2002). “Determination of interaction parameters of block copolymers containing aromatic polyesters from solubility parameters obtained from solution viscosities”, Colloid Polym. Sci. 280, 10271037.Google Scholar
Pospiech, D., Werner (Ptacek), S., Jehnichen, D., Komber, H., Friedel, P., Reuter, U., Funari, S. S., Perlich, J., and Voit, B. (2012). “Multifunctionalized methacrylate di- and triblock copolymers: synthesis and nanostructure”, J. Nanostruct. Polym. Nanocomp. 8, 5866.Google Scholar
Roth, S. V., Döhrmann, R., Dommach, M., Kuhlmann, M., Kröger, I., Gehrke, R., Walter, H., Schroer, C., Lengeler, B., and Müller-Buschbaum, P. (2006). “The small-angle options of the upgraded USAXS beamline BW4 at HASYLAB”, Rev. Sci. Instrum. 77, 17.Google Scholar
Segalman, R. A. (2005). “Patterning with block copolymer thin films”, Mater. Sci. Eng. R 48, 191226.Google Scholar
Sepe, A., Zhang, J., Perlich, J., Smilgies, D.-M., Posselt, D., and Papadakis, C. M. (2016). “Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing – an in-situ time-resolved GISAXS study”, Eur. Polym. J. 81, 607620.Google Scholar
Strobl, G. (2007). The Physics of Polymers – Concepts for Understanding their Structure and Behaviour (Springer Verlag, Berlin).Google Scholar
Sun, S. H. and Zeng, H. (2002). “Size-controlled synthesis of magnetite nanoparticles”, J. Am. Chem. Soc. 124, 82048205.Google Scholar
Werner, S., Pospiech, D., Jehnichen, D., Eckstein, K., Komber, H., Friedel, P., Janke, A., Näther, F., Reuter, U., Voit, B., Taurino, R., Messori, M. (2011). “Synthesis and phase-separation behavior of α,ω-difunctionalized diblock copolymers”, J. Polym. Sci. A, Polym. Chem. 49, 926937.Google Scholar
Xu, C., Ohno, K., Ladmiral, V., and Composto, R. J. (2008). “Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers”, Polymer 49, 35683577.Google Scholar
Yee, C. K., Jordan, R., Ulman, A., White, H., King, A., Rafailovich, M. and Sokolov, J. (1999). “Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride”, Langmuir 15, 34863491.Google Scholar
Yoo, M., Kim, S., Jang, S.-G., Choi, S.-H., Yang, H., Kramer, E. J., Lee, W. B., Kim, B. J., and Bang, J. (2011). “Controlling the orientation of block copolymer thin films using thermally-stable gold nanoparticles with tuned surface chemistry”, Macromolecules 44, 93569365.Google Scholar
Zhang, J., Posselt, D., Smilgies, D.-M., Perlich, J., Kyriakos, K., Jaksch, S., and Papadakis, C. M. (2014). “Lamellar diblock copolymer thin films during solvent vapor annealing studied by GISAXS: different behavior of parallel and perpendicular lamellae”, Macromolecules 47, 57115718.Google Scholar