Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:38:10.449Z Has data issue: false hasContentIssue false

Effect of mechanical constraint on the hydration properties of Na-montmorillonite: study under extreme relative humidity conditions

Published online by Cambridge University Press:  22 May 2017

Walid Oueslati*
Affiliation:
UR 05/13-01 Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides (PMLNMH), Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
Nejmeddine Chorfi
Affiliation:
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Mohamed Abdelwahed
Affiliation:
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The evaluation of the performance of a geological barrier, consisting essentially of a clay matrix, in the context of industrial and household waste confinement must go with the study of its hydration behavior respectively under extreme atmospheric conditions and variable mechanical soil constraints. Na-montmorillonite (Swy-2) is used, as starting materials, in order to establish the link between applied externals strain (variable relative humidity rate %RH and axial mechanical constraint) and the hydration material response. All constraints are realized at the laboratory scale. This work is achieved using oedometric testing and quantitative X-ray diffraction (XRD) analysis, based on the modeling approach, which consists in the comparison of experimental 00l reflections with the calculated ones deduced from structural models. This approach allows us to quantify the interlamellar space configuration and all structural changes along the c* axis. Obtained results show a decrease for the void ratio e value along the compaction/reswelling process. The “insitu” XRD analysis realized at 5%RH demonstrates hydration shift, from dehydrated water layer (i.e. 0W) to monohydrated water layer (i.e. 1W), attributed to the applied mechanical constraint. At 90%RH, the sample hydration state remains at tri-hydrated water layer (3W) with a clear interstratified trends.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammar, M., Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2013). “XRD profile modeling approach tools to investigate the effect of charge location on hydration behavior in the case of metal exchanged smectite,” Powder Diffr. 28, S284S300.CrossRefGoogle Scholar
Ammar, M., Oueslati, W., Rhaiem, H. B., and Ben Haj Amara, A. (2014). “Effect of the hydration sequence orientation on the structural properties of Hg exchanged montmorillonite: quantitative XRD analysis,” J. Environ. Chem. Eng. 2, 16041611.CrossRefGoogle Scholar
Ammar, M., Oueslati, W., Chorfi, N., and Ben Haj Amara, A. (2015). “The water retention mechanism of a Cs+ and Na+ exchanged montmorillonite: effect of relative humidity and ionic radius on the interlayer,” Powder Diffr. 30, S70S75.CrossRefGoogle Scholar
Atkinson, J. H. and Bransby, P. L. (1978). The Mechanics of Soils (McGraw-Hill, London).Google Scholar
Bailey, S. W. (1982). “Nomenclature for regular interstratifications,” Am. Mineral. 67, 394398.Google Scholar
Barclay, L. and Ottewill, R. H. (1970). “Measurement of forces between colloidal particles,” Spec. Discuss. Faraday Soc. 1, 138147.CrossRefGoogle Scholar
Ben Brahim, J., Armagan, N., Besson, G., and Tchoubar, C. (1983). “X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Two-waterlayer Na-beidellite,” J. Appl. Crystallogr. 16, 264269.CrossRefGoogle Scholar
Ben Rhaiem, H., Tessier, D., and Pons, C. H. (1986). “Comportement hydrique et evolution structurale et texturale des montmorillonites au cours d'un cycle de dessiccation-humectation. I. Cas des montmorillonites calciques,” Clay Miner. 21, 929.CrossRefGoogle Scholar
Ben Rhaiem, H., Pons, C. H., and Tessier, D. (1987). “Factors affecting the macrostructure of smectites. Role of cation and history of applied stresses,” in Proc. Int. Clay Conf., edited by Schultz, L. A., Van Ophen, H. and Mumpton, F. A. (The Clay Minerals Society, Denver), pp. 292297.Google Scholar
Ben Rhaiem, H., Tessier, D., and Ben Haj Amara, A. (2000). “Mineralogy of the <2 mm fraction of three mixed-layer clays from southern and central Tunisia,” Clay Miner. 35, 375381.CrossRefGoogle Scholar
Bèrend, I., Cases, J. M., François, M., Uriot, J. P., Michot, L. J., Masion, A., and Thomas, F. (1995). “Mechanism of adsorption and desorption of water vapour by homoionic montmorillonites: 2. The Li+ , Na+ , K+ , Rb+ and Cs+ exchanged forms,” Clays Clay Miner. 43, 324336.CrossRefGoogle Scholar
Claret, F., Bauer, A., Schäfer, T., Griffault, L., and Lanson, B. (2002). “Experimental investigation of the interaction of clays with high-pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France),” Clays Clay Miner. 50(5), 633646.CrossRefGoogle Scholar
Denis, J. H., Keall, M. J., Hall, P. L., and Meeten, G. H. (1991). ” Influence of potassium concentration on the swelling and compaction of mixed (na,k) ion-exchanged montmorillonite,” Clay Miner. 26, 255268.CrossRefGoogle Scholar
Drits, V. A. and Sakharov, B. A. (1976). X-Ray Structure Analysis of Mixed-Layer Minerals (Nawka, Moscow), p. 256 (in Russian).Google Scholar
Drits, V. A. and Tchoubar, C. (1990). X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons (Springer, Berlin, Germany).CrossRefGoogle Scholar
Drits, V. A., Srodon, J., and Eberl, D. D. (1997). “XRD measurement of mean crystallite thickness of illite and illite/smectite: reappraisal of the kubler index and the scherrer equation,” Clays Clay Miner. 45, 461475.CrossRefGoogle Scholar
Drits, V. A., Sakharov, B. A., Salyn, A. L., and Lindgreen, H. (2005). “Determination of the content and distribution of fixed ammonium in illite-smectite using a modified X-ray diffraction technique: application to oil source rocks of western Greenland,” Am. Mineral. 90, 7184.CrossRefGoogle Scholar
El Hafid, K. and Hajjaji, M. (2016). “Alkali-etched heated clay: microstructure and physical/mechanical properties,” J. Asian Ceram. Soc. 4(3), 234242.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B. A., and Drits, V. A. (2005). “Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties,” Am. Miner. 90, 13581374.CrossRefGoogle Scholar
Ferrage, E., Sakharov, B. A., Michot, L. J., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jimenez-Ruiz, M., and Cuello, G. J. (2011). “Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data,” J. Phys. Chem. C, 115, 18671881.CrossRefGoogle Scholar
Gaillot, A. C., Flot, D., Drits, V. A., Manceau, A., Burghammer, M., and Lanson, B. (2003). “Structure of synthetic K-rich birnessite obtained by high temperature decomposition of KMnO4. I. Two layer polytype from 800°C experiment,” Chem. of Mater. 15, 46664678.CrossRefGoogle Scholar
Grangeon, S., Claret, F., Linard, Y., and Chiaberge, C. (2013). “X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates,” Acta Crystallogr. B69, 465473.Google Scholar
Grangeon, S., Lanson, B., Lanson, M., and Manceau, A. (2008). “Crystal structure of Ni-Sorbed synthetic vernadite: a powder X-ray diffraction study,” Mineral. Mag. 72, 12791291.CrossRefGoogle Scholar
Gualtieri, A. F. (1999). “Modeling the nature of disorder in talc by simulation of X-ray powder patterns,” Eur. J. Mineral. 11, 521532.CrossRefGoogle Scholar
Gualtieri, A. F., Ferrari, S., Leoni, M., Grathoff, G., Hugo, R., Shatnawi, M., Paglia, G., and Billinge, S. (2008). “Structural characterization of the clay mineral illite 1 M,” J. Appl. Crystallogr. 41, 402415.CrossRefGoogle Scholar
Katti, D., Ghosh, P., Schmidt, S., and Katti, K. S. (2005). “Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids,” Biomacromolecules 6(6), 32763282.CrossRefGoogle ScholarPubMed
Laird, D. A. (1996). “Model for crystalline swelling of 2:1 phyllosilicates,” Clays Clay Miner. 44, 553559.CrossRefGoogle Scholar
Laird, D. A. (1999). “Layer charge infl uences on the hydration of expandable 2:1 phyllosilicates,” Clays Clay Miner. 47, 630636.CrossRefGoogle Scholar
Lanson, B. (2011). “Modelling of X-ray diffraction profiles: investigation of defective lamellar structure crystal chemistry,” EMU Notes Mineral. 11, 151202 (Chapter 4).Google Scholar
Lanson, B., Drits, V. A., Feng, Q., and Manceau, A. (2002 a). “Crystal structure of synthetic Na-rich birnessite: evidence for a triclinic one-layer cell,” Am. Mineral. 87, 16621671.CrossRefGoogle Scholar
Lanson, B., Drits, V. A., Gaillot, A.-C., Silvester, E. J., Plançon, A., and Manceau, A. (2002 b). “Structure of heavy-metal sorbed birnessite. Part 1. Results from X-ray diffraction,” Am. Mineral. 87, 16311645.CrossRefGoogle Scholar
Lutterotti, L., Voltolini, M., and Wenk, H. R., Bandyopadhyay, K., and Vanorio, T. (2010). “Texture analysis of a turbostratically disordered Ca-montmorillonite,” Am. Mineral. 95, 98103.CrossRefGoogle Scholar
Manceau, A., Drits, V. A., Silvester, E., Bartoli, C., and Lanson, B. (1997). “Structural mechanism of Co2+ oxidation by the phyllomanganate buserite,” Am. Mineral. 82, 11501175.CrossRefGoogle Scholar
Manevitch, O L. and Rutledge, G C. (2004). “Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation,” J. Phys. Chem. B 108(4), 14281435.CrossRefGoogle Scholar
Mèring, J. and Glaeser, R. (1954). “Sur le rôle de la valence des cations Èchangeables dans la montmorillonite,” Bulletin de la Sociètè Francaise de Minèralogie et Cristallographie 77, 519530.CrossRefGoogle Scholar
Mermut, A. R. and Cano, A. F. (2001). “Baseline studies of the clay minerals society source clays: chemical analyses of major elements,” Clays Clay Miner. 49(5), 381386.CrossRefGoogle Scholar
Mesri, G. and Olson, R. E. (1971). “Mechanisms controlling the permeability of clays,” Clays Clay Miner. 19, 151158.CrossRefGoogle Scholar
Moll, W. F. (2001). “Baseline studies of the clay minerals society source clays: geological Origin,” Clays Clay Miner. 49, 374380.CrossRefGoogle Scholar
Moore, D. M. and Reynolds, R. C. Jr., (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, New York).Google Scholar
Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2011). “XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations,” Desalination 271, 139149.CrossRefGoogle Scholar
Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2012). “Effect of relative humidity constraint on the metal exchanged montmorillonite performance: an XRD profile modeling approach,” Appl. Surf. Sci. 261, 396404.CrossRefGoogle Scholar
Oueslati, W., Ammar, M., and Chorfi, N. (2015). “Quantitative XRD analysis of the structural changes of Ba-Exchanged Montmorillonite: effect of an in situ hydrous perturbation,” Minerals 5, 507526.CrossRefGoogle Scholar
Sakharov, B. A., Lindgreen, H., Salyn, A., and Drits, V. A. (1999). “Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting,” Clays Clay Miner. 47, 555566.CrossRefGoogle Scholar
Saravanan, S., Ramamurthy, P. C., and Madras, G. (2015). “Effects of temperature and clay content on water absorption characteristics of modified MMT clay/cyclic olefin copolymer nanocomposite films: permeability, dynamic mechanical properties and the encapsulated organic device performance,” Comp. B: Eng. 73, 19.CrossRefGoogle Scholar
Sato, T., Watanabe, T., and Otsuka, R. (1992). “Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites,” Clays Clay Miner. 40, 103113.CrossRefGoogle Scholar
Schäfer, T., Claret, F., Bauer, A., Griffault, L., Ferrage, E., and Lanson, B. (2003). “Natural organic matter (NOM)-clay association and impact on Callovo-Oxfordian clay stability in high alkaline solution: spectromicroscopic evidence,” J. Phys. IV 104, 413416.Google Scholar
Segad, M., Jönsson, B. O., Åkesson, T., and Cabane, B. (2010). “Ca/Na Montmorillonite: structure, forces and swelling properties,” Langmuir 26(8), 57825790.CrossRefGoogle ScholarPubMed
Tanaka, H., Shiwakoti, D. R., Mishima, O., Watabe, Y., and Tanaka, M. (2001). “Comparison of mechanical behavior of two overconsolidated clays: yamashita and Louiseville clays,” Soils Found. 41(4), 7388.Google Scholar
Tanaka, H., Tsutsumi, A., and Ohashi, T. (2014). “Unloading behavior of clays measured by CRS test,” Soils Found. 54(2), 8193.CrossRefGoogle Scholar
Tertre, E., Delville, A., Prêta, D., Hubert, F., and Ferrage, E. (2015). “Cation diffusion in the interlayer space of swelling clay minerals – a combined macroscopic and microscopic study,” Geochim. Cosmochim. Acta 149, 251267.CrossRefGoogle Scholar
Tessier, D. and Pedro, G. (1987). “Mineralogical characterization of 2:1 clays in soils: importance of the clay texture,” Proc. Int. Clay Conf. Denver, 7884.Google Scholar
Thakur, V. K. S. and Singh, D. N. (2005). “Rapid Determination of Swelling Pressure of Clay Minerals,” J. Test. Eval. 33(4), Paper ID JTE11866, 239245.CrossRefGoogle Scholar
Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., and Charlet, L. (2003). “Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations,” Am. Mineral. 88(11–12), 19891995.CrossRefGoogle Scholar
Van Olphen, H. (1965). “Thermodynamics of interlayer adsorption of water in clays,” J. Colloid Sci. 20, 822837.CrossRefGoogle Scholar
Vaughan, M. T. and Guggenheim, S. (1986). “Elasticity of muscovite and its relationship to crystal structure,” J. Geophys. Res. 91(B5), 46574664.CrossRefGoogle Scholar
Viani, A., Gualtieri, A. F., and Artioli, G. (2002). “The nature of disorder in montmorillonite by simulation of X-ray powder patterns,” Am. Mineral. 87, 966975.CrossRefGoogle Scholar
Wang, Y., Wang, Y., and Wang, E. D. (2001). “A study on characteristics of modified montmorillonite,” Acta Petrologica et Mineralogia. 20, 565567.Google Scholar
Zeng, L-L., Hong, -S., Wang, C., and Yang, Z-Z. (2016). “Experimental study on physical properties of clays with organic matter soluble and insoluble in water,” Appl. Clay Sci. 132–133, 660667.CrossRefGoogle Scholar
Zheng, L., Rutqvist, J., Birkholzer, J. T., and Liu, H-H. (2015). “On the impact of temperatures up to 200 °C in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling,” Eng. Geol. 197, 278295.CrossRefGoogle Scholar
Zivica, V. and Palou, M. T. (2015). “Physico-chemical characterization of thermally treated bentonite,” Comp. Part B: Eng. 68, 436445.CrossRefGoogle Scholar